Common Areas to Find Fluid Control Valves in Wine Production

valves used in wine making
Valves and controls play big role in wine quality
Wine making and craft breweries are becoming big business in the Mid-Atlantic region. Their growth leads to a need for continuous process improvement in fermentation, filtering, and bottling. Automation, with higher efficiency valves, sensors, and piping  becomes increasingly important as the enterprise grows. In wine making, process control is critical. Careful control of temperature, pressure, level and flow, and detection of solids, acidity, and sugars needs constant monitoring to assure the best quality and consistency.

A variety of fluid control valves are commonly used in the production of wine, both large scale production and smaller scale. These valves are found in many areas, from sanitary valves handling the product itself, to hot water valves for cleaning equipment, to pneumatic valves transmitting pneumatic signals to handling equipment.

Here is a quick video showing some typical areas where fluid control valves can be found in the wine making process.


For more information, contact:

Ives Equipment
www.ivesequipment.com
877-768-1600

Veterans in Automation

Hire Vets
Veterans are excellent candidates for
Automation careers
Reprinted with permission from the Automation Federation (www.automationfederation.org)
Note: At time of writing, both Preston Mihalko and Nick Abbenante were employees of Ives Equipment.





Automation jobs require a combination of technical know-how combined with interpersonal skills, making them a great fit for veterans.

It’s always difficult to find suitable candidates for openings in industrial automation as most of these jobs require both technical and interpersonal skills, often with a bit of management expertise added to the mix. Universities graduate hundreds of thousands of mostly young men and women every year with business and liberal arts degrees, and many of these grads have excellent interpersonal skills, but generally aren’t very technical.

Engineering and other STEM graduates have the required technical background, but are always in short supply and command very high salaries. And many of these grads are a bit lacking in interpersonal skills as they have spent their formative years relentlessly hitting the books, not developing relationships.

As far as management skills, these are best gained through on-the-job training, where actual supervision takes place. Unfortunately, not many candidates for entry and mid-level automation jobs have this type of experience.

But veterans naturally combine all three of these skills, as just about every position in each branch of the military requires training and hands-on experience in one or more technical areas. Interpersonal skills are developed by forced close cooperation among those serving, and many relatively young veterans have impressive experience managing teams as commissioned and non-commissioned officers (NCOs). If fact, many would say NCOs, in particular, make great job candidates because they have risen through the ranks to become the backbone of the Army and Navy as sergeants and petty officers, respectively.

Preston Mihalko and Nick Abbenante are two great examples of veterans who have made the successful transition from the military to industrial automation, and their stories illustrate how their skills seamlessly transferred from the military to the civilian sector.

Navy vet finds success in sales

Mihalko spent three years as a service warfare officer in the Navy. He was onboard a ship for much of this time as his specialty was anti- submarine warfare. Technical training was part of daily life as he was required to understand ship operations, as well as the specialized equipment used to detect submarines.

In many ways, a ship is a small city at sea, with larger vessels crewed by thousands, and even smaller ships crewed by hundreds. As such, there are onboard systems for everything from propulsion to electrical generation to water treatment. And, of course, these systems need to be monitored and controlled around the clock, with very stringent requirements for reliability and uptime.

The mechanisms of a nuclear submarine or large surface ship rival any industrial installation, so the parallels between onboard and industrial automation systems are obvious. It’s virtually impossible to serve aboard a ship for any length of time without absorbing extensive technical knowledge and gaining lots of hands-on experience.

As far as interpersonal skills, these are naturally gained by living in very close quarters with hundreds or even thousands of sailors. These colleagues span the range from front-line workers to supervisors, starting with newly enrolled sailors and advancing to experienced ship captains. Close cooperation is forced, and virtually no one leaves the Navy without knowing how to develop and maintain work relationships with people from every walk of life and exhibiting most every temperament.

If one is an officer, like Preston, then these work relationships contain a supervisory component. The management training given to officers in the Navy and other branches of the service has been honed for over a hundred years, and it consists of both book learning and hands-on experience. Those who move up the ranks exhibit a strong sense of personal responsibility and judgment, giving them the ability to lead and work effectively with others.

Upon his honorable discharge, Preston was looking for a career where he could successfully combine his interpersonal and technical skills. “I was interested in sales and not operations because I like being in front of customers, and because I enjoy face-to-face technical interactions. I first went into medical device sales, then from there to industrial automation sales,” says Mihalko.

Successful industrial salespeople must work with application- driven products, as does Mihalko, and therefore need to exhibit a combination of capabilities. Technical skills are needed so salespeople can understand the products and how they t customers’ needs, and interpersonal skills are required so salespeople can properly communicate how products satisfy customer needs and expectations.

Mihalko found the specific skills he learned in the Navy transferrable to the field of industrial automation. “I was able to apply shipboard systems and concepts to understand industrial automation issues. Interaction with equipment on a daily basis helped me to gain hands-on experience and understanding, which I found applied both on board a ship and on land. In terms of intangible benefits, I gained the ability to network with co-workers through my interactions with other Navy personnel,” he notes.

Fittingly, Mihalko uses nautical terms to describe the position he’s held for the last three years working in outside sales for an automation distributor based in the Maryland/Washington, DC area. “I’m the captain of my own destiny in outside sales, and I enjoy marketing myself along with the brands I represent. The challenge of the uncertainty and having to figure out solutions is also appealing,” he indicates.

Among ‘a few good men’

As the iconic ad intones, the Marines are “looking for a few good men.” Nick Abbenante thought he might t the bill, and he ended up serving for four years as a Marine Corp First Commander Infantry Officer. In this position, he worked as a military occupational specialist in the areas of combat and weapons. Abbenante’s plans weren’t as specific as Mihalko’s, but were similar in many ways. “I wanted direct interaction with customers, and knew I wanted to be in outside sales,” he says. As a member of one of the most tightly woven cadres in any branch of service in any country, Abbenante knew what it meant to work closely with and depend on others. These interpersonal skills and deep relationships were something he could transfer directly to a sales position.

Sales, like many other areas of industrial automation, requires organizational skills, which Abbenante felt he gained in the service. “The Marines taught me the value of prioritizing, multi-tasking, attention to detail, taking initiative and persistence. And, like any branch of service, not being afraid to get involved,” he explains. Abbenante combined his skills and training to find the type of job he wanted in industrial automation, where he’s worked for the last two years as an outside sales rep with responsibility for the company’s Maryland territory. He works very closely with process plant personnel in this position to help them analyze applications, and specify the proper equipment to solve problems and optimize processes.

“Being a salesperson is like having my own little enterprise. One must show ownership and take stock in the success of your own business territory, which contributes to the success of the larger enterprise. Every day brings new challenges at different plants,” he notes.

Both Mihalko and Abbenante have some advice for other veterans looking to make the transition from the military to industrial automation.

Advice to other veterans and potential employers

Some people look at military life and don’t immediately see the connections to the private sector. To an employer considering a recently discharged candidate, or even a new veteran moving back into civilian life, there may seem to be a gap. Abbenante thinks both sides are looking at it incorrectly, and need to reconsider how to match military skills and experiences with job requirements. “Don’t look for an exact match to your skills, but instead look for positions with requirements complimentary to your knowledge, and then build upon that,” he suggests.

Mihalko chimes in with his advice: “You have an open-ended career choice because you’ve gained many different skills in the service. Sales is one area, but there are many other avenues which might match up your skills and abilities,” he points out.

And both Abbenante and Mihalko encourage disabled veterans to look for positions in sales and other areas where heavy lifting and other physical rigors aren’t involved. “Sales gives you the opportunity to solve problems and think on your feet, but not necessarily in a physical way,” Mihalko emphasizes.

Mihalko used the services of the military to find private-sector work. “I went through a transitioning veterans’ organization to find a position. I attended a career event with interviews set up based on my resume’s match with available jobs,” he says. Abbenante took a different route than Mihalko. “I worked with headhunters I met at a conference, and they assisted in setting up interviews,” Abbenante notes.

Although Abbenante and Mihalko served in different roles in the military and followed their own unique paths to find positions in the automation eld, both are proud to be automation industry professionals.

Compact NTEP Approved Custody Transfer Coriolis Flowmeter Means Easier Installation and Space Savings

SITRANS FC430
SIEMENS SITRANS FC430
Running an industrial plant carries with it a very high level of responsibility. You must adhere to the highest standards of safety and hygiene, ensure that your final products are of consistent quality, and comply with stringent industry and governmental regulations.

By combining the Siemens SITRANS FCS400 sensor and SITRANS FCT030 transmitter, the digitally based SITRANS FC430 is suitable for applications within the process industries. It is also one of the first Coriolis systems worldwide to achieve SIL 2 and 3 approval in hardware and software, respectively – the ultimate assurance of safety and reliability.

The Siemens SITRANS FCS400 is the market’s most compact sensor, making installation and replacement easier than ever. It provides an accuracy rate of 0.1% and high sensitivity for optimal measurement of even low flows. The SITRANS FCS400 features a very stable zero point, low pressure loss, and high immunity to process noise and plant vibrations.

The SITRANS FCT030 transmitter delivers multi-parameter measurements with enhanced efficiency, simplicity and security. Available in a modular design, it can be remote or compact-mounted with all SITRANS FCS400 sensor sizes. An enclosed micro SD card serves as a removable database of operational information and provides direct access to all certificates and audit trails.

The SITRANS FC430 is ideal for a broad array of process industries and applications, including:
  • Chemical. Designed for optimal performance in hazardous areas and compliant with a wide variety of certificates and approvals, including SIL 2 (hardware), SIL 3 (software), FM, ATEX, CSA
  • Food & Beverage/Pharmaceutical. High level of accuracy improves quality control, while multi-parameter measurement ability strengthens process management. 
  • Oil & Gas. NTEP approved for custody transfer and capable of measuring mass flow directly, ensuring performance is not affected by fluctuating process conditions. Unique tube design results in minimal pressure loss and high resistance to process noise.
  • Affiliated Industries/OEMs. Highly customizable nature offers versatility to meet the needs of customers in many different businesses, from food and beverage to automotive to HVAC, to oil and gas to pulp & paper and beyond.
Formore information, contact:

Ives Equipment
877-768-1600

A Specialty Temperature Sensor Specifically for Improving Heat Tracing Applications

Heat Tracing RTD
Heat Tracing RTD (courtesy of
Applied Sensor Technologies)
A temperature sensor is key to any heat tracing application as it provides temperature feedback about the pipe temperature, which in turn, is used turn on or off the heating system (electric pipe tracing or steam control valve).

The temperature sensor is critical for both categories of heat tracing - process temperature maintenance and freeze protection.  Failure to maintain process temperature in a pipe or vessel could significantly effect product quality, or cause failure of ancillary equipment such as pumps, valves, and compressors. Properly protecting against freezing keeps pipes from bursting or product from blocking the flow. For both situations, product maintenance and freeze protection, accurate and reliable temperature sensing is critical.

There’s a new and very innovative line of RTD temperature assemblies specifically designed for heat tracing applications. The unique, replaceable element concept can save customers both time and money, plus increase overall system reliability and up-time.

A major refining company determined that they save over $1,000 in labor each time they have to replace a sensor and have reduced their repair time from two days to less than one hour.

The design consists of a terminal head and right-angle shaped outer sheath, with a curved weld-pad at the end. The replaceable RTD element assembly is contained in the outer tube and, when installed, presses against the pipe. Heat transfer is excellent and heat conduction away from the element is minimal. Should the element ever need to be replaced, it's a five-minute job to open the terminal head, unwire the sensor, slide it out and slide a new one in.

For more information, contact:

Ives Equipment
(877) 768-1600

The Ten Things Everyone Should Know about pH and ORP

pH ORP probe
pH ORP probe
(courtesy of AquaMetrix)
Reprinted with permission from AquaMetrix

1. pH measurements are only good to 0.1 pH units

Electrodes are funny things. They are the only electronic components that don’t even have specifications listed in their data sheets. One major figure of merit, the impedance of the glass electrode, is on the order of megahoms and can vary by a factor of two. Cross sensitivity to other ions (e.g. sodium), response time and differences between any two electrodes limit the accuracy of measurement. Expecting accuracy of greater than 0.1 pH units is unrealistic.

2. Speaking of accuracy... It is not the same as precision.

For a consistent process a pH probe can achieve precision of results to within 0.02 units but it’s accuracy will always be limited by variables such as calibration accuracy, high sodium content or Careful routine calibration, however, will narrow the gap between the accuracy of readings closer to the lower level of precision.

3. ORP measurements are only good to ± 20 mV. 

Once again the measurement of ORP might be characterized by a high precision but the accuracy of the reading is constrained by the difficulty of calibration, as explained in point 6, and the non-buffered calibration solutions that allow the ORP value of the calibration solutions to change over time. Whereas the buffered composition of pH calibration solutions insures that they will change minimally an ORP calibrations solution is a mixture of Fe2+ and Fe3+ salts. Just the addition of air to the mixture will increase the ORP of the mixture. So don’t look for “NIST traceable” on the label of an ORP calibration solution.

4. ORP measurements are relative.


The process electrode is nothing more than a platinum (or gold) band upon which oxidation (reduction) reactions take place. To complete the circuit, as in all potentiometric devices, is a reference electrode. Usually that is the same Ag/AgCl electrode used in a pH probe so the REDOX potential that you read is the difference between the Pt band process electrode and the arbitrarily chosen reference electrode. What matters most with an ORP measurement is its change to an agreed upon standard.

5. pH calibration requires two points.


Calibration measures the response of an instrument as one changes the measurement variable in a known way. For pH measurements that measurement variable is the concentration of hydrogen ions. One calibrates a pH probe by drawing a line through points representing the response of a pH probe to more than one H+ ion concentrations (or pH values). Therefore calibration requires at least two points.

6. ORP calibration can only realistically be done with one point.

This sounds like a reversal of point 4 but it’s not. ORP is not a measure of any one species (e.g. H+ ions or oxygen molecules). It measures the collective REDOX potential of everything in the water. Furthermore calibration solutions, e.g. 200 mV Light’s solution and 600 mV Zobell’s solution are two completely different mixtures of reagents. Therefore all we can is choose one calibration solution and calibrate for it.

7. ORP measurements can be slow.

Stick an ORP probe in a calibration solution and you will get a steady reading with- in half a minute. Take the same probe and stick it in a glass of tap water and it might take 20 minutes for the read-

ing to settle to the 200-300 mV that is typical of tap water. The response of the process electrodes to the REDOX reactions that take place on the surface of a Pt electrode depends on the speed of the many reactions that give the potential and the rate at which molecules diffuse through the water. The Fe2+ and Fe 3+ ions that comprise most of the ORP value in calibration solutions react very quickly with the Pt but the Cl- and dissolved oxygen that make up tap water react much more slowly. So the key to successful ORP measurement is patience.

8. pH measurements must be temperature compensated to be accurate.


A pH measurement is the determination of H+ ions in solution. Higher temperature causes the chemical activity to increase and the pH reading to increase accordingly. So we must remove the temperature effect by measuring it and using the well known Nernst equation to correct it for the reading at 250C. (The correction is quite simple. The pH value is proportional to temperature when the latter is an absolute value (i.e. in Kelvins).

9. ORP measurements are affected by temperature but are NOT corrected for it.

An ORP value simply reflects the ability of whatever is in the water to oxidize whatever contaminants are in the water. Of course oxidation speeds up at higher temperatures. But since ORP measures the rate of chemical reactions and not any one chemical species there is no need to correct it. However we can convert the temperature reading to the ORP that we would measure at 250 C so that we have a basis for comparing the chemistry of the process. That’s why we provide a temperature sensing thermistor or RTD with our differential ORP probes.

10. A differential probe properly cared for will last a long time but it won’t last forever.

Over time chemicals in the process make their way through the junction or salt bridge and into the pH 7 buffer that bathes the reference electrode. Manufacturers go to great length to minimize this contamination but they can only slow it down. Aquametrix differential probes allow the user to cheaply and quickly replenish both the pH 7 solution and the salt bridge so that our probes our industry leaders when it comes to probe lifetime. Nonetheless electrodes themselves lose their efficiency as the glass becomes contaminated and/or eroded by the process. However the good news that, with routine calibration and maintenance a differential probe can last for years in most environments.

Automation Federation, Oil & Gas and DHS Work Together for Cybersecurity

The Oil & Gas industry explore, extract, and deliver vital energy via a finely-tuned network of worldwide control systems. These systems used to be isolated proprietary systems, but they're now connected to the Internet just like so many other of our critical infrastructures, and are now susceptible to the same vulnerabilities that we see reported on a daily basis.

Since 2006 the Automation Federation has been the Host Organization for LOGIIC (Linking Oil and Gas Industry to Improve Cybersecurity.) This has been a successful collaboration between the Automation Federation, the Department of Homeland Security, and the members of LOGIIC.

Over the past decade, the LOGIIC consortium has designed tools and techniques to protect critical systems on a global scale, from research & development through practical implementation. LOGIIC is a visionary project. It was one of the first of its kind including partners that would normally compete against each other. LOGIC is about collaborating in cyber security.


The Cyber Security Division of the DHS Science & Technology Directorate leads an ongoing consortium that began with a single partner in 2004 and now includes five major oil & gas companies and the Automation Federation, supported by world-class vendors and research organizations. It's a global engagement with global impact on cyber security. LOGIIC is one team. It's important to be international because a threat does not come from one country or from another one country.

Since its inception, LOGIIC has successfully completed eight major projects, with plans for many more.  Upon completion of selected projects, LOGIIC delivers public reports to help elevate best practices across the entire industry. Both the member companies and the government are putting funds towards these projects which benefits not only the private sector, but also the public interest. Companies are applying these learnings within their organizations, because it helps bridge the gap between information technology and the industrial-environment sides of the organization.

The lessons learned through the LOGIIC projects allows the roll out of higher level cyber security and protection across all the industries. DHS is a key contributor to LOGIIC and to the success of the projects year after year. In addition to providing that technical expertise and environments such as labs and research institutes, they’re able to conduct substantial testing, and act as a conduit to make it all happen. LOGIIC started as a new model and a vision. Members came to the table, bought into the vision, and now LOGIIC is delivering real results to protect the modern industrial infrastructure.

To recognize the success of LOGIIC, DHS has released a video that features the efforts of LOGIIC. You can see the video here on the Ives Equipment Community Page.

Compact Coriolis Flowmeter with NTEP Custody Transfer Approval

NTEP approval
NTEP approval for
custody transfer

When oil and gas are physically transferred from one operator to another, the term custody transfer is used to describe the transaction. It is understood as the transfer of fluid material defined by a metering device, at a given location, to another party. Custody transfer occurs at a variety of locations including from production platforms to ships, trucks, railcars, barges, and also at the final destination, such as the processing plant or refinery.

Accuracy is very important in custody transfer as both parties and instruments such as flowmeters must have approval by the organizations such as the American Petroleum Institute (API) or the National Conference on Weights and Measures (NCWM).

The National Type Evaluation Program (NTEP) is an evaluation program overseen by the National Conference on Weights and Measures (NCWM). Manufacturers who carry NTEP approval comply with local state and government regulations regarding transactions selling, purchasing, exchanging, custody transfer, or establishing the cost for services on based on weight.

NTEP approval
Compact Coriolis flowmeter
with NTEP approval
Siemens has announced the SITRANS FC430 Coriolis flow meter now has National Type Evaluation Program (NTEP) CT approval for the USA and Canada. The approval is for both the measurement of volume and mass liquid flow, and offers high accuracy measurement with minimum of pressure loss. The SITRANS FC430's performance and custody transfer approval makes it an excellent fiscal metering tool for diverse industries such as oil and gas, petrochemical, and food and beverage.

For more information, contact:
Ives Equipment
www.ivesequipment.com
877-768-1600

Understanding Condensate Pumps on a Steam Distribution System

industrial steam system
Diagram of industrial steam system
(courtesy of Watson McDaniel)
A condensate pump is a type of pump used to pump the condensate (water) produced in an industrial steam system. The primary application for the condensate pump is pumping condensate from a process application or condensate collection area back to the condensate return system.

In certain cases, the steam pressure of the system may be sufficient to push the condensate through the steam traps and condensate return lines, back to the condensate holding tank in the boiler room. In most practical situations, however, one or more condensate return pumps are required to assist in overcoming gravity, pressure drops from long piping runs, and back pressures in return lines.

Condensate Return Pumps are either electrically-driven centrifugal pumps or non-electric mechanical pumps that use steam pressure as the motive force to pump the condensate. Non-electric pumps are referred to as Pressure Motive Pumps (PMPs).

A facility will often have a separate area that contains various components required for the generation of steam, such as a boiler, condensate holding or deaerator (DA) tank, boiler feed pump, water treatment, etc. Regulated by the boiler control system, the boiler feed pump sends condensate from the holding tank back to the boiler.

Pressure Motive Pumps (PMPs) are non-electric pumps which return condensate back to the boiler room; using steam pressure as the motive force. PMPs can be supplied as stand-alone units – which include a pump tank, the internal operating mechanism, and a set of inlet and outlet check valves, or: as a packaged system – which also includes the vented receiver tank (to collect the condensate) mounted on a common base.

The following is a comprehensive document, courtesy of Watson McDaniel, that provides a good general understanding of steam and condensate systems, traps and condensate pumps. 


For more information, contact:

Ives Equipment
www.ivesequipment.com
(877) 768-1600

Coriolis Flow Sensor with 15 RA/230 Grit for Sanitary Applications

Sanitary Coriolis flow sensor
Sanitary Coriolis flow sensor
with 15 RA / 230 Grit finish
on wetted parts.
(Courtesy of Siemens)
In sanitary applications, the finish and the material must be designed for easy and reliable cleaning and sanitation. For decades agencies have required sanitary finishes to comply to minimum standards. But now, many food, Biotech, and Pharma companies are going beyond the minimum regulations and providing high-end finishes because of the reduced sanitation time and reduced bacteria growth these finishes facilitate.

Sanitary applications mandate that stainless steel equipment have a sanitary finish. In very general terms, “sanitary finish” means a smooth, scratch-free, non-corrosive finish. But it’s much more than that. To qualify the finish more accurately, there are two primary terms used:

Roughness Average, or RA: A standard for an average of the peaks and valleys of the metal’s surface, measured in microinches or micrometers. The lower the RA, the smoother the finish.

Grit: The size of the abrasive used in the metal polishing process. Higher grit numbers are associated with higher polishing.

For process control equipment manufacturers, achieving higher-end finishes is not an easy proposition. Providing better finishes requires experience and controlled processes for quality fabrication, as well as possible tooling and production floor changes. Working inside sanitary requirements requires careful handling to prevent contamination from the manufacturing environment. Not all process instrument manufacturers are capable of providing the required environment.

A Coriolis Flowmeter with 15 RA/230 Grit for Biotech and Pharma

Siemens is currently offering a 15 RA/230 Grit surface finish for the FCS400 Coriolis flow sensor internal wetted-tube parts as a special, and will soon be offering it as a standard.

A Coriolis sensor, with such a high end finish, is very attractive to many "clean" industries including chromatography, blood plasma fractioning, chemical synthesis phases, Active Pharmaceutical Ingredient (API) extraction/fermentation and purification, formulation, and  purified API.

Biotech and Pharma manufacturers, in particular, are poised to take advantage of the enhanced 15 RA/230 Grit finish coupled with the inherent benefits of the FCS400 Coriolis flow sensor, namely:
  1. Accurate measurement across the entire range
  2. Zero internal fabrication joints and self-draining design
  3. All metal surfaces eliminate risks from particulates from the breakdown of synthetic materials
  4. No internal fluids to leak into the process
  5. A direct mass flow rate/ and total
For more information, contact:

Ives Equipment
www.ivesequipment.com
(877) 768-1600

Next Generation Tail Gas Analyzer

On-Line Process Analytics is a young industry. Now going into the 3rd generation, the paper below covers topics related to the specification, use and long term ownership of SRU process gas analyzers.







AMETEK Process Instruments has been the leader in tail gas analysis for over 40 years-with more than 1,100 installed model 880 NSL analyzers and more than 100 million hours of run time. The Model 888, the successor of the 880 NSL uses field-proven and highly reliable UV technology to accurately monitor the H2S and SO2 concentrations in sulfur recovery tail gas. This compact, rugged analyzer mounts directly on the process pipe, eliminating the complexity and safety issues of fiber optic coupled photometers.

The Model 888 is the evolution of a well proven formula. All the best elements of the iconic 880 NSL are still there; Four year lamp life, no shelter required and steam blow back for ammonia salts.

Major Water Savings in Dairy Operations White Paper

double-seat mixproof valves

Alfa Laval describes a better way to clean double-seat mixproof valves and reduce water and CIP liquid consumption even further. This involves quick and repetitive opening and closing of the seat, rather than exposing valve surfaces to CIP liquid ow for a given duration of time. This discovery was made at one of Alfa Laval’s process facilities. Alfa Laval engineers observed that, during the first fractions of a second of a cleaning cycle, the ow of CIP liquid created a high level of shear stress on the valve surfaces used less water than traditional seat lift and seat push cleaning, and increased overall cleaning efficiency. 

Read more, or download the white paper below.

Composite Solenoid Valves for Reverse Osmosis Water Systems

reverse osmosis system
Typical reverse osmosis system
(courtesy of Wikipedia)
Reverse osmosis (RO) is one of the most popular methods for effective water purification. It has been used for years to purify contaminated water, including converting brackish or seawater to drinking water.

Reverse osmosis is a process in which dissolved inorganic solids (such as salts) are removed from a solution (such as water). This is accomplished by pushing the water through a semi permeable membrane, which allows only the water to pass, but not the impurities or contaminates.

Reverse Osmosis can deliver bottled-water quality safety and taste by removing over 99% of dissolved minerals, chlorine and contaminants. Many leading bottled-water companies actually use large-scale RO to produce their water.

Reverse osmosis systems are found in several drinking water applications from restaurant, food and beverage equipment to grocery store produce misting.

The ASCO Series 212 solenoid valve is designed for these type systems. The valves come with NSF approvals for use in drinking water systems and also is design with unique “FasN” quick connection system. The valves are designed to handle 150 psi up to 180 deg. F. and has low wattage coils in both AC and DC.

See the video below for an illustration of where these valves are used in RO systems.

Siemens SITRANS LUT400 Pump Level Assist Routines

Siemens SITRANS LUT400
Siemens SITRANS LUT400

The Siemens SITRANS LUT400 series controllers are compact, single point, long-range ultrasonic controllers for continuous level, or volume measurement of liquids, slurries, and solids, and high accuracy monitoring of open channel flow.

The preconfigured pump routines in the SITRANS LUT 400 allow you to choose the best pump control scenario for your application. In the video below, you will see how the assist pump routines work.

The SITRANS LUT 400 has three assists pump routines available:
  • Alternate duty assist
  • Service ratio duty assist
  • Fixed duty assist
The fixed duty assist routine mainly uses one pump to control the liquid level. In this example, pump 1 will always start before pump 2. When the liquid level reaches the pump 1 “on” set point, pump one will turn on. If the liquid level continues to rise while pump one is running, then pump 2 will start. Pump 2 will assist pump 1 to lower the liquid level. Both pumps we'll turn off when the liquid level reaches the “off” set point. This pump sequence is fixed. Pump 1 will always start first, then if necessary, pump 2 will assist pump 1.

The alternate duty assist routine rotates between both pumps to control the liquid level. Pump 1 will start first. If it cannot keep up with the inflow, then pump 2 will turn on and assist pump 1. Both pumps will run until the liquid level reaches the pump “off” set point. On the next cycle, pump 2 will be the first pump to start. Pump 1 will assist pump 2 if it is necessary. The starting pump will continue to alternate between pump 1 and pump 2 after each filling cycle.

The service ratio duty assist routine rotates between both pumps based on the defined service ratio. In this example the service ratio is split equally between both pumps. The SITRANS LUT will choose which pump starts first based on this ratio. Since pump 1 has the lowest runtime hours it starts first. Pump 2 will assist pump 1 if the level continues to increase.  On the next cycle, pump 2 to will start first. Pump 1 will assist pump 2 if necessary. The service duty ratio assist routine will continue to maintain the runtime ratio for each filling cycle.


The Basics of Continuous Emissions Monitoring (CES)

Continuous emission monitoring
Continuous emission monitoring system
(courtesy of AMETEK Process Instruments)
Continuous emission monitoring systems, known as CEMs, are used by plants and facilities to assure compliance with the EPA’s requirement to limit the amount of certain gasses (such as CO2) into the air. A CEM samples, measures, collects data, records and reports the gas emissions information. CEM systems can also measure and report gas flow, gas opacity and moisture content.

CEMs are typically used to monitor flue gas emissions (the gas exiting to the atmosphere via a flue from an furnace, oven, or boiler).

CEM system are made up of a sampling probe, a filter, a sampling line, a means to condition the gas being sampled, a gas used for calibration, and a group of gas analyzers geared toward the gases being monitored.

The most common gases measured are: carbon dioxide, carbon monoxide, airborne particulate, sulfur dioxide, volatile organics, mercury, nitrogen oxides, hydrogen chloride, and oxygen.

Continuous emission monitoring systems operate by extracting a small diluted gas sample into the CEM via a sampling probe. The sample is diluted with air because of the hot, wet, and contaminant carrying nature of the stack gas. Once the sample gas is taken, the concentration of its components are calculated through a variety of technologies such as infrared and ultraviolet adsorption, chemiluminescence, fluorescence and beta ray absorption. After analysis, the sample gas exits the analyzer and is usually vented outdoors.

Another method of extracting a sample gas is called "hot dry" extraction or "direct CEMs". In this situation, the sample gas is not diluted with air, but instead the pure sample is carried through a heated line at high temperatures, filtered to remove contaminants, and dried to remove moisture. This method is preferred when O2 measurement is required because there is no additional oxygen being introduced via the air dilution as described in the above method.

The EPA requires a data acquisition and handling system to collect and report the data, so the CEM must operate continually and provide data on an hourly basis.

For more information about CEM systems, contact:

Ives Equipment Corporation
www.ivesequipment.com
(877) 768-1600