Showing posts with label Process Control. Show all posts
Showing posts with label Process Control. Show all posts

The Fourth Industrial Revolution: Reshaping Industrial Process Control and Instrumentation

The Fourth Industrial Revolution: Reshaping Industrial Process Control and Instrumentation

The Fourth Industrial Revolution (4IR) is a term that describes the current era of rapid technological advancements characterized by the fusion of physical, digital, and biological systems. This revolution is fundamentally changing the way we live, work, and interact with one another. At the heart of 4IR lies the integration of cutting-edge technologies such as artificial intelligence (AI), the Industrial Internet of Things (IIoT), robotics, and automation, transforming industries and reshaping the global economy.

4IR will bring about significant changes and innovations in industrial process control and instrumentation. Here are some key predictions for how these products and systems will evolve:

Enhanced connectivity: The proliferation of IIoT devices and smart sensors will enable real-time monitoring and control of industrial processes. This increased connectivity will allow seamless communication between machines, systems, and operators, improving efficiency, reducing downtime, and optimizing performance.

Advanced analytics and AI: Integrating AI and machine learning algorithms will revolutionize data analysis in industrial settings. These technologies will enable predictive maintenance, anomaly detection, and process optimization by analyzing vast amounts of data generated by sensors and control systems. This will result in improved decision-making, reduced costs, and increased productivity.

Cloud-based solutions: The adoption of cloud computing will continue to grow, allowing for the massive storage, processing, and analysis of industrial data. Cloud-based platforms will enable remote monitoring, control, and collaboration, making it easier for businesses to manage their operations worldwide.

Augmented and virtual reality: AR and VR technologies will play a significant role in industrial process control and instrumentation. These technologies will enable immersive training experiences, remote assistance, and real-time visualization of complex processes. This will enhance the skills of the workforce and improve overall operational efficiency.

Cybersecurity: As industrial systems become more connected and digitized, the importance of cybersecurity will continue to grow. Robust security measures, such as encryption, authentication, and network segmentation, will be crucial to protect industrial control systems from cyber threats and ensure the integrity of sensitive data.

Modular and flexible design: Industrial process control products and instrumentation will increasingly adopt modular and flexible designs to accommodate industries' rapidly changing needs. This will enable businesses to quickly adapt to new technologies, processes, and market demands, ensuring their competitiveness in the 4IR landscape.

As the Fourth Industrial Revolution unfolds, industrial process control and instrumentation will undergo significant transformations. The integration of advanced technologies, enhanced connectivity, and data-driven decision-making will reshape the way industries operate. Your role in embracing these changes and investing in the necessary technologies and skills is crucial. It will not only position your business to thrive in the 4IR era but also contribute to the overall progress and success of the industry.

Ives Equipment
https://ivesequipment.com
610-768-1600


The Critical Role of Qualified Technical Sales Organizations in Industrial Process Control

The Critical Role of Qualified Technical Sales Organizations in Industrial Process Control

As industries evolve and new technological advancements emerge, the role of a highly qualified technical sales organization has become increasingly vital in various industrial sectors. Particularly in industries such as water treatment, petrochemical, chemical, pharmaceutical, food and beverage, and power generation, a specialized technical sales team that sells industrial process control instrumentation and industrial valves is crucial in achieving business growth and success.
  1. Identifying Customer Needs: A skilled technical sales team possesses the knowledge and expertise to understand complex industrial systems. They can work closely with customers, identifying their specific requirements and challenges, thereby offering tailored solutions that best address their needs. This consultative approach builds customer trust and strengthens long-term relationships.
  2. Supporting Business Growth: Technical sales teams drive sales and revenue growth by providing appropriate and optimal solutions to customers. They actively seek out new opportunities and target prospective customers with offerings that match their unique needs. Their in-depth understanding of the technology enables them to align the company’s products and services with diverse industrial sectors' current and future requirements.
  3. Uncovering New Markets and Applications: A highly qualified technical sales team excels in discovering new markets and application areas where their products and services can create value. By leveraging their industry expertise, these sales professionals identify new opportunities and help expand the reach of their products into untapped markets. In doing so, they contribute significantly to the company’s growth strategy.
  4. Delivering Product Expertise: Industrial process control instrumentation and industrial valves can be complex products requiring high technical knowledge. Sales teams specializing in these products deeply understand their specifications, applications, and benefits. They can explain the intricacies of these products, helping customers make informed purchasing decisions.
  5. Providing Post-Sales Support: A qualified technical sales team doesn’t just close deals; they provide valuable post-sales support. Whether it’s assisting with installation, troubleshooting technical issues, or training the customer’s staff, these professionals ensure the smooth integration of their products into the customer’s operations. This service fosters customer loyalty and encourages repeat business.
  6. Mitigating Market Risks: In volatile industries such as petrochemical and power generation, changes in regulations, technology, and market demand can create uncertainties. A proficient technical sales team keeps abreast of industry trends and regulatory changes. They help their organization adapt to these shifts by offering products and solutions that align with the changing market landscape.
  7. Accelerating Innovation: Technical sales teams act as a bridge between the company and its customers. They collect feedback from customers regarding product performance, needs, and challenges. This feedback helps the company’s R&D team develop innovative products and solutions that meet emerging industry needs.
  8. Enhancing Customer Satisfaction: By providing tailored solutions, excellent customer service, and reliable support, a qualified technical sales team enhances customer satisfaction. Satisfied customers become brand advocates, leading to increased referrals and new business opportunities.
A highly qualified technical sales organization is indispensable in the industrial process control sector. Their in-depth knowledge, industry expertise, and customer-centric approach drive sales growth discover new markets and applications, and build strong customer relationships. As technology continues to evolve and industrial requirements change, the importance of these technical sales teams will only continue to grow.

Ives Equipment
610-768-1600

Automation and Control Solutions for Hydrogen Production and Alternative Energy

Automation and Control Solutions for Hydrogen Production and Alternative Energy

One of the most important ways to reduce CO2 emissions in the chemical, oil, gas, paper, energy and transportation sectors is to generate and use green hydrogen from renewable sources. Electrolysis can convert electricity generated from wind, hydropower, or solar energy into hydrogen, which can then be stored in tanks, transported, and used whenever and wherever needed. Hydrogen's use is ubiquitous -  in CO2-neutral transportation, such as fuel cell vehicles, the chemical industry, steel manufacturing, and power plants. 

Process control is a primary and centralized function that responds to changes in operational consistency and load demand. Online monitoring and remote sensing advances, particularly for open-loop operations, are operated by controls and automation to develop actionable information for closed-loop control functions. In these situations, innovative automation solutions, such as those specified and implemented by Ives Equipment with flexible and integrated control technology, are required. 

With a focus on technical and economic feasibility for producing alternative energy and hydrogen fuels, Ives Equipment automation expertise provides exceptional control system experience that saves time and money and improves safety.

Ives Equipment
610-768-1600

Seven Decades of Commitment, Service, and Expertise in Process Control

Expertise in Process Control

Since its founding in 1954, Ives Equipment Corp. has offered a broad range of process control equipment, including valves, regulators, wireless products, flow products, pressure gauges, control products, level instrumentation, sanitary products, temperature instruments, analytical products, electric heat trace, and biopharmaceutical products. 


For almost 70 years, Ives Equipment Corporation has provided the industries of eastern and central Pennsylvania, Delaware, Maryland, metro NY, New Jersey, Virginia, and Washington DC with the most up-to-date process control equipment as well as process control consulting and services. 


Ives established their company on a foundation of high-quality employees that are well-trained and experienced and who are passionate about finding the most effective solutions to their clients' control challenges. 


Ives categorizes its comprehensive product portfolio under four distinct groups. These are as follows: 


Ives Equipment and Controls: Provides instrumentation and control products to the chemical, petrochemical, refining, bulk storage, primary metals, pulp & paper, PowerGen, gas & oil distribution, and OEM markets.


Pharmaceutical, Bio-pharm, and Sanitary: Provides hygienic, ultra-pure, and sanitary instruments, connectors, fittings, tubing, and gaskets to the pharma, bio-pharm, food, and beverage, life-science, and laboratory industries.


Analytical Instruments: Analyze process material samples and record data for quality, conformance, and compliance. 


Water and Wastewater Treatment: Providing instruments, analyzers, valves, and controls for the transfer, storage, analysis, treatment, and logging of municipal and industrial water treatment systems.


The most successful path is one that provides you with the answers and expertise you require, when and where you need it, and from a single source. Ives Equipment will assist you in streamlining operations and establishing a single point of responsibility, supported by industry experience and the application expertise you require. Let Ives Equipment provide you with that significant competitive advantage.

Understanding HART Communication Protocol

A technological advance introduced in the late 1980’s was HART, an acronym standing for Highway Addressable Remote Transmitter. The purpose of the HART standard was to create a way for instruments to digitally communicate with one another over the same two wires used to convey a 4-20 mA analog instrument signal. In other words, HART is a hybrid communication standard, with one variable (channel) of information communicated by the analog value of a 4-20 mA DC signal, and another channel for digital communication whereby many other variables could be communicated using pulses of current to represent binary bit values of 0 and 1. Those digital current pulses are superimposed upon the analog DC current signal, such that the same two wires carry both analog and digital data simultaneously.

Looking at a standard loop-powered (2-wire) process transmitter circuit, we see the transmitter, a DC power supply (voltage source), and usually a 250 ohm resistor to create a 1 to 5 volt signal readable by any voltage-sensing indicator, controller, or recorder:

HART Communications

The transmitter’s primary function in this circuit is to regulate current to a value representative of the measured process variable (e.g. pressure, temperature, flow, etc.) using a range of 4 to 20 mA, while the DC voltage source provides power for the transmitter to operate. Loop-powered instruments are very common in industrial instrumentation because they allow both power and (analog) data to be conveyed on the same pair of wires.

With the advent of microprocessor-based process transmitters, it became possible for instrument technicians to digitally configure parameters inside the transmitter (e.g. range values, damping values) and also query the transmitter for self-diagnostic alarms. In order to make full use of this digital functionality, though, there had to be some way to communicate digital data to and from the process transmitter over the same two wires used to convey the 4-20 mA analog signal. Otherwise, the only way to access this rich array of digital data inside the transmitter would be to connect a communicator device to some data port located on the transmitter itself, which is inconvenient due to the nature of how these transmitters are used in industry (located in dirty places, often hard to access while carrying a personal computer or other communication device).
HART Transmitter
HART Transmitter
(Siemens)

Thus the HART communication protocol was born to address this need. HART communicates digital data along the loop conductors in the form of AC signals (audio-frequency tones) superimposed on the 4-20 mA DC current signal. A modem built into the smart transmitter translates these AC signals into binary bits, and vice-versa. Now, instrument technicians could “talk” with the new microprocessor-based transmitters simply by connecting a HART communications device at any point along the two-wire cable, even at the far end where the cable terminates at the control system hardware (panel-mounted controller, PLC, DCS, etc.).

Being able to communicate digital data over the same wire pair as the DC power and analog signal opens a whole new range of possibilities. Now, the field-mounted transmitter can communicate self-diagnostic information, status reports, alarms, and even multiple process variables to the control system in addition to the original analog signal representing the (main) process variable. With digital communication, the only data limitation is speed (data rate), not quantity. The control system may even communicate information to the transmitter using the same digital protocol, using this digital data channel to switch between different measurement range sets, activating special features (e.g. square-root characterization, damping, etc.), automatically and remotely.



Reprinted from "Lessons In Industrial Instrumentation" by Tony R. Kuphaldt – under the terms and conditions of the Creative Commons Attribution 4.0 International Public License.

Differential Pressure Transmitters and Inferential Measurement

Differential Pressure Transmitter
Differential Pressure Transmitter
(Siemens)
Differential pressure transmitters are utilized in the process control industry to represent the difference between two pressure measurements. One of the ways in which differential pressure (DP) transmitters accomplish this goal of evaluating and communicating differential pressure is by a process called inferential measurement. Inferential measurement calculates the value of a particular process variable through measurement of other variables which may be easier to evaluate. Pressure itself is technically measured inferentially. Thanks to the fact numerous variables are relatable to pressure measurements, there are multiple ways for DP transmitters to be useful in processes not solely related to pressure and vacuum.

An example of inferential measurement via DP transmitter is the way in which the height of a vertical liquid column will be proportional to the pressure generated by gravitational force on the vertical column. The differential pressure transmitter measures the pressure exerted by the contained liquid. That pressure is related to the height of the liquid in the vessel and can be used to calculate the liquid depth, mass, and volume. The gravitational constant allows the pressure transmitter to serve as a liquid level sensor for liquids with a known density. A true differential pressure transmitter also enables liquid level calculations in vessels that may be pressurized.

Gas and liquid flow are two common elements maintained and measured in process control. Fluid flow rate through a pipe can be measured with a differential pressure transmitter and the inclusion of a restricting device that creates a change in fluid static pressure. In this case, the pressure in the pipe is directly related to the flow rate when fluid density is constant. A carefully machined metal plate called an orifice plate serves as the restricting device in the pipe. The fluid in the pipe flows through the opening in the orifice plate and experiences an increase in velocity and decrease in pressure. The two input ports of the DP transmitter measure static pressure upstream and downstream of the orifice plate. The change in pressure across the orifice plate, combined with other fluid characteristics, can be used to calculate the flow rate.

Process environments use pressure measurement to inferentially determine level, volume, mass, and flow rate. Using one measurable element as a surrogate for another is a useful application, so long as the relationship between the measured property (differential pressure) and the inferred measurement (flow rate, liquid level) is not disrupted by changes in process conditions or by unmeasured disturbances. Industries with suitably stable processes - food and beverage, chemical, water treatment - are able to apply inferential measurement related to pressure and a variable such as flow rate with no detectable impact on the ability to measure important process variables.

Introduction to a Closed Loop Control System

Closed Loop Control System
Closed Loop Control System
The video below explains the concept of a closed loop control system, using a steam heat exchanger and food processing application as an example.

A closed loop control system uses a sensor that feeds current system information back to a controller. That information is then compared to a reference point or desired state. Finally, a a corrective signal is sent to a control element that attempts to make the system achieve its desired state.

A very basic example of a temperature control loop includes a tank filled with product (the process variable), a thermocouple (the sensor), a thermostat (the controller), and a steam control valve feeding a tubing bundle (the final control element).

The video outlines all the major parts of the system, including the measured variable, the set point, the controlled variable, controller, error and disturbance.


Contact http://www.ivesequipment.com with any process control or instrumentation requirement. Call 877-768-1600 for immediate assistance.

Ives Equipment Business Groups

Ives Equipment organizes its extensive product line into four distinct groups:

Ives Equipment and Controls, providing instrumentation and control products to the chemical, petro-chemical, refining, bulk storage, primary metals, pulp & paper, powergen, gas & oil distribution and OEM markets.

Pharmaceutical, Bio-pharm, and Sanitary, providing hygienic, ultra-pure and sanitary instruments, connectors, fittings, tubing and gaskets to the pharma, bio-pharm, food and beverage, life-science and labortory industries.

Analytical Instruments, used to analyze process material samples and record the data for quality, conformance and compliance.

Water and Wastewater Treatment, providing instruments, analyzers, valves and controls for the transfer, storage, analysis, treatment, and logging of municipal and industrial water treatment systems.

Upgrading to a United Electric (UE) Controls One Series from a Mechanical Pressure Switch

This video below demonstrates how to replace an older on/off mechanical pressure switch and install the UE One Series.

The One Series electronic pressure and temperature transmitter-switches set the standard for smart digital process monitoring. With a fully adjustable set point and deadband and 0.1% repeatability, the One Series performs in a wide variety of applications. Available in Type 4X enclosures approved for intrinsic safety, flameproof and non-incendive area classifications, these hybrid transmitter-switches are designed to provide transmitter, switch and gauge functions all-in-one rugged enclosure that can withstand the rigors of harsh and hazardous environments.

Each One Series model incorporates intelligent self-diagnostics and can report detected faults before they become major safety issues. Plug Port Detection protects against sensor clogging. Nuisance trip filtering reduces false and spurious signals. The ability to capture pressure spikes and valleys provides process information to aid in the commissioning and debugging process.

For more information, visit http://www.ivesequipment.com or call (877) 768-1600.

Advanced Safety Integrity Universal Gas Transmitter

The Sensidyne SensAlert ASI provides enhanced protection and dependability for critical safety applications where personnel, processes, and facilities are at risk. The third-party certified SIL-2 SensAlert ASI offers dependability and versatility while remaining the easiest to install, commission, operate, and maintain.

SensAlert ASI is third-party certified to IEC61508 Level 2 (SIL-2) for both hardware and software with certification to global hazardous area and performance standards. The Test-on-Demand feature with on-board gas generator provides remote functionality checks with generated gas while Predictive Sensor End-of-Life Indication provides advanced warning of impending sensor failure.

For your convenience, we have posted the SensAlert ASI Users Manual below.

Instrumentation and Controls for the Grain Industry

instruments and control for grain producers
Instruments and control for grain producers.
Abstracted with permission from the Siemens "For the Love of Grain" article.  View the complete document at  the bottom of this post or download it from Ives Equipment here.

A successful grain merchant during the 1840s is considering expansion in the coming years. Recent years have been fruitful, but there are rumors of a new invention on the market: a grain elevator. Claims are that this elevator is able to unload more than 1,000 bushels each hour! Compare this to current operations where workers carry sacks of grain on their backs from wagons to waiting ships. Our grain merchant has seen firsthand the hazards of this process – everything from suffocating and explosive grain dust to the daily stresses on workers’ bodies. Will this new technology be able to increase the merchant’s profits as well as make a safer working environment for employees?

Over a century and a half later, mechanized equipment is now an essential part of the grain industry, from planting and growing to harvesting, handling, and milling grain. Your challenges are still the same as those of nineteenth century grain operators, though – how can you improve processes and cut costs while also increasing safety?

Promoting a culture of safety

Working with grain has the potential to be deadly, especially when grain is in motion. Similar to ‘quicksand,’ moving grain can bury a worker in seconds. In 2010, U.S. grain operators reported that fifty-one workers had been trapped in grain, more than in any year since Purdue University began collecting data on grain entrapments in 1978. Sadly, almost half of these entrapments led to fatalities.

Increasing automation

To prevent deadly occurrences such as these, the grain industry is increasingly taking steps to reduce grain handling and storage hazards. Improving efficiency in grain facilities through automation is becoming a growing industry trend. A concern for safety is one driver behind automating operations, as a reduction in human interactions with grain decreases the occurrence of accidents.

Another reason for the push towards automation is that owners are constantly looking to increase production and reduce expenses while still producing a high quality product. A solution is to invest in automated processes in a facility. Many facilities have moved to complete automation of production, termed Totally Integrated Automation (TIA).

Refining inventory management 

Tracking inventory in grain silos is a significant component of a successful grain operation. Managing raw materials and finished products is essential for keeping processes efficient and optimizing inventory ordering and shipments. By knowing where materials are located, companies can use these resources more effectively, decreasing human intervention and increasing efficiency. As well, checking bin levels on a regular basis requires substantial labor costs. To make inventory track-ing faster and more streamlined, the industry is continually moving towards automated inventory management.

Read complete article below:

New Ives Equipment Video

Ives Equipment, founded in 1954, provides a diverse range of process control equipment, including valves, regulators, wireless products, flow products, pressure gauges, control products, level instrumentation, sanitary products, temperature instruments, analytical products, electric heat trace and bio-pharmaceutical products.

For more than 60 years, Ives Equipment Corporation has successfully served the industries of eastern and central Pennsylvania, Delaware, Maryland, metro NY, New Jersey, Virginia and Washington DC with the latest in process control equipment and services.

The Ives business is built on a foundation of quality people, highly trained and experienced, who take a keen interest in finding the optimum solutions to customers' control problems.

Industrial Control Valve Actuator Operating Principles

Control valve actuators control fluid in a pipe by varying the orifice size through which the fluid flows. Control valves contain two major components, the valve body and the valve actuator. The valve body provides the fluid connections and immovable restrictor comprised a valve stem and plug that is in contact with the fluid that varies the flow.

The valve actuator is the component that physically moves the restrictor to vary the fluid flow. Three actuator types are used in control valves and they include spring and diaphragm, solenoid, and motor. As the name suggests the spring in diaphragm actuator uses a spring and a diaphragm to move the valve stem and plug.

A 15 PSI pneumatic signal enters the housing at the top of the actuator. As pressure is exerted on the diaphragm a downward force is applied against the spring which moves the restrictor. The diaphragm moves until it creates an equal but opposing force against the spring at which time the motion stops as the plug meets the valve seat. With no air pressure the restrictor is pushed upward by the spring to act as a normally open control valve. To vary the position of the restrictor and flow through the valve, a current to pressure transducer can be used to provide a three to 15 PSI signal to the diaphragm.  At 3 PSI the valve is maintained open, and 15 PSI the valve is maintained closed. Pressures between the three to 15 PSI range proportionally change the flow of the valve. For example a pressure of 9 PSI applied to the diaphragm moves the spring and valve stem to 50 percent operating range.

For on /off control of the valve, a solenoid is used to actuate the valve to a fully closed or fully open position. Applying current to the coil generates a magnetic field that moves the plunger downward against the return spring. With zero current applied to the coil the spring pulls the plunger upwards to the fully open position for a normally open state control valve.

Another method for variable valve positioning uses a motor and is referred to as proportional control mode. Using a gear motor attached to the valve stem a servo amplifier provides a DC control signal that moves the valve to the desired position. Feedback is achieved with the wiper arm attached to the valve stem that sends a signal back to the servo amplifier where the position is monitored the servo amplifier drives the motor until the control signal is equal to the feedback signal.

Watch the video below for an illustrated explanation. For more information on control valves, contact Ives Equipment at 877-768-1600 or visit http://www.ivesequipment.com.

Your Plant's Partners Make A Huge Difference in Performance and Profitability

The business relationships you make and the partnerships you choose have a dramatic impact on your plant operations. Choosing the right instrumentation and process equipment partner will save you time, money, and make your plant safer. 

For more than 60 years, Ives Equipment Corporation has successfully served the industries of eastern and central Pennsylvania, Delaware, Maryland, metro NY, New Jersey, Virginia and Washington DC with the latest in process control equipment and services.

The Ives business is built on a foundation of quality people, highly trained and experienced, who take a keen interest in finding the optimum solutions to customers' control problems. If you need a proven, experienced, and reliable business partner, choose Ives.

PART 1: Setting Up and Operating the United Electric One Series Safety Transmitter

One Series Safety Transmitter
One Series Safety Transmitter
This is PART 1 in a series of training videos for the United Electric Controls One Series Safety Transmitter.

The One Series Safety Transmitter is a pressure or temperature monitoring transmitter switch that provides a NAMUR NE 43 standard 4-20 mA analog output. Its programmable high-capacity solid-state safety relay output enables the fastest emergency shutdowns.

The One Series Safety Transmitter is certified for use in SIL 2 functional safety applications (HFT = 0), and is capable of SIL 3 applications when augmented by redundancy and voting logic. Its simple design means fewer nuisance trips — for greater safety, productivity, and throughput.

The One Series Safety Transmitter was designed with features that simplify installation, improve productivity, and eliminate nuisance trips. “I Am Working” sensor diagnostics with redundant data processing detect open, shorted, and plugged sensing elements.

The transmitter’s analog output conforms to the NAMUR NE 43 standard and provides process variable (PV) and detected-fault information. Discrete outputs provide a fail-safe (open) emergency shutdown when a fault is detected. Set point and deadband (reset point) are 100% programmable.


The instrument is password protected to prevent unwanted parameter changes; eliminating the risk of tampering. In addition, LED backlighting enhances viewing of process variables, parameters, and status in dimly lit areas.

  1. Fewer nuisance trips for greater productivity
  2. More affordable than adapting a process transmitter for SIS
  3. Internal relay for faster emergency shutdowns
  4. Higher safe failure fraction simplifies SIL achievement

For more information, contact:
Ives Equipment
(877) 768-1600

PART 2: Setting Up and Operating the United Electric One Series Safety Transmitter

One Series Safety Transmitter
One Series Safety Transmitter 
This is PART 2 in a series of training videos for the United Electric Controls One Series Safety Transmitter.

The One Series Safety Transmitter is a pressure or temperature monitoring transmitter switch that provides a NAMUR NE 43 standard 4-20 mA analog output. Its programmable high-capacity solid-state safety relay output enables the fastest emergency shutdowns.

The One Series Safety Transmitter is certified for use in SIL 2 functional safety applications (HFT = 0), and is capable of SIL 3 applications when augmented by redundancy and voting logic. Its simple design means fewer nuisance trips — for greater safety, productivity, and throughput.

The One Series Safety Transmitter was designed with features that simplify installation, improve productivity, and eliminate nuisance trips. “I Am Working” sensor diagnostics with redundant data processing detect open, shorted, and plugged sensing elements.
The transmitter’s analog output conforms to the NAMUR NE 43 standard and provides process variable (PV) and detected-fault information. Discrete outputs provide a fail-safe (open) emergency shutdown when a fault is detected. Set point and deadband (reset point) are 100% programmable.


The instrument is password protected to prevent unwanted parameter changes; eliminating the risk of tampering. In addition, LED backlighting enhances viewing of process variables, parameters, and status in dimly lit areas.

The Series One leads the market in process safety transmitters because:
  • Fewer nuisance trips for greater productivity
  • More affordable than adapting a process transmitter for SIS
  • Internal relay for faster emergency shutdowns
  • Higher safe failure fraction simplifies SIL achievement
For more information, contact:

Ives Equipment
(877) 768-1600

Common Areas to Find Fluid Control Valves in Wine Production

valves used in wine making
Valves and controls play big role in wine quality
Wine making and craft breweries are becoming big business in the Mid-Atlantic region. Their growth leads to a need for continuous process improvement in fermentation, filtering, and bottling. Automation, with higher efficiency valves, sensors, and piping  becomes increasingly important as the enterprise grows. In wine making, process control is critical. Careful control of temperature, pressure, level and flow, and detection of solids, acidity, and sugars needs constant monitoring to assure the best quality and consistency.

A variety of fluid control valves are commonly used in the production of wine, both large scale production and smaller scale. These valves are found in many areas, from sanitary valves handling the product itself, to hot water valves for cleaning equipment, to pneumatic valves transmitting pneumatic signals to handling equipment.

Here is a quick video showing some typical areas where fluid control valves can be found in the wine making process.


For more information, contact:

Ives Equipment
www.ivesequipment.com
877-768-1600