Sunday, February 28, 2016

Compact Coriolis Flowmeter with NTEP Custody Transfer Approval

NTEP approval
NTEP approval for
custody transfer

When oil and gas are physically transferred from one operator to another, the term custody transfer is used to describe the transaction. It is understood as the transfer of fluid material defined by a metering device, at a given location, to another party. Custody transfer occurs at a variety of locations including from production platforms to ships, trucks, railcars, barges, and also at the final destination, such as the processing plant or refinery.

Accuracy is very important in custody transfer as both parties and instruments such as flowmeters must have approval by the organizations such as the American Petroleum Institute (API) or the National Conference on Weights and Measures (NCWM).

The National Type Evaluation Program (NTEP) is an evaluation program overseen by the National Conference on Weights and Measures (NCWM). Manufacturers who carry NTEP approval comply with local state and government regulations regarding transactions selling, purchasing, exchanging, custody transfer, or establishing the cost for services on based on weight.

NTEP approval
Compact Coriolis flowmeter
with NTEP approval
Siemens has announced the SITRANS FC430 Coriolis flow meter now has National Type Evaluation Program (NTEP) CT approval for the USA and Canada. The approval is for both the measurement of volume and mass liquid flow, and offers high accuracy measurement with minimum of pressure loss. The SITRANS FC430's performance and custody transfer approval makes it an excellent fiscal metering tool for diverse industries such as oil and gas, petrochemical, and food and beverage.

For more information, contact:
Ives Equipment
www.ivesequipment.com
877-768-1600

Sunday, February 21, 2016

Understanding Condensate Pumps on a Steam Distribution System

industrial steam system
Diagram of industrial steam system
(courtesy of Watson McDaniel)
A condensate pump is a type of pump used to pump the condensate (water) produced in an industrial steam system. The primary application for the condensate pump is pumping condensate from a process application or condensate collection area back to the condensate return system.

In certain cases, the steam pressure of the system may be sufficient to push the condensate through the steam traps and condensate return lines, back to the condensate holding tank in the boiler room. In most practical situations, however, one or more condensate return pumps are required to assist in overcoming gravity, pressure drops from long piping runs, and back pressures in return lines.

Condensate Return Pumps are either electrically-driven centrifugal pumps or non-electric mechanical pumps that use steam pressure as the motive force to pump the condensate. Non-electric pumps are referred to as Pressure Motive Pumps (PMPs).

A facility will often have a separate area that contains various components required for the generation of steam, such as a boiler, condensate holding or deaerator (DA) tank, boiler feed pump, water treatment, etc. Regulated by the boiler control system, the boiler feed pump sends condensate from the holding tank back to the boiler.

Pressure Motive Pumps (PMPs) are non-electric pumps which return condensate back to the boiler room; using steam pressure as the motive force. PMPs can be supplied as stand-alone units – which include a pump tank, the internal operating mechanism, and a set of inlet and outlet check valves, or: as a packaged system – which also includes the vented receiver tank (to collect the condensate) mounted on a common base.

The following is a comprehensive document, courtesy of Watson McDaniel, that provides a good general understanding of steam and condensate systems, traps and condensate pumps. 


For more information, contact:

Ives Equipment
www.ivesequipment.com
(877) 768-1600

Wednesday, February 10, 2016

Coriolis Flow Sensor with 15 RA/230 Grit for Sanitary Applications

Sanitary Coriolis flow sensor
Sanitary Coriolis flow sensor
with 15 RA / 230 Grit finish
on wetted parts.
(Courtesy of Siemens)
In sanitary applications, the finish and the material must be designed for easy and reliable cleaning and sanitation. For decades agencies have required sanitary finishes to comply to minimum standards. But now, many food, Biotech, and Pharma companies are going beyond the minimum regulations and providing high-end finishes because of the reduced sanitation time and reduced bacteria growth these finishes facilitate.

Sanitary applications mandate that stainless steel equipment have a sanitary finish. In very general terms, “sanitary finish” means a smooth, scratch-free, non-corrosive finish. But it’s much more than that. To qualify the finish more accurately, there are two primary terms used:

Roughness Average, or RA: A standard for an average of the peaks and valleys of the metal’s surface, measured in microinches or micrometers. The lower the RA, the smoother the finish.

Grit: The size of the abrasive used in the metal polishing process. Higher grit numbers are associated with higher polishing.

For process control equipment manufacturers, achieving higher-end finishes is not an easy proposition. Providing better finishes requires experience and controlled processes for quality fabrication, as well as possible tooling and production floor changes. Working inside sanitary requirements requires careful handling to prevent contamination from the manufacturing environment. Not all process instrument manufacturers are capable of providing the required environment.

A Coriolis Flowmeter with 15 RA/230 Grit for Biotech and Pharma

Siemens is currently offering a 15 RA/230 Grit surface finish for the FCS400 Coriolis flow sensor internal wetted-tube parts as a special, and will soon be offering it as a standard.

A Coriolis sensor, with such a high end finish, is very attractive to many "clean" industries including chromatography, blood plasma fractioning, chemical synthesis phases, Active Pharmaceutical Ingredient (API) extraction/fermentation and purification, formulation, and  purified API.

Biotech and Pharma manufacturers, in particular, are poised to take advantage of the enhanced 15 RA/230 Grit finish coupled with the inherent benefits of the FCS400 Coriolis flow sensor, namely:
  1. Accurate measurement across the entire range
  2. Zero internal fabrication joints and self-draining design
  3. All metal surfaces eliminate risks from particulates from the breakdown of synthetic materials
  4. No internal fluids to leak into the process
  5. A direct mass flow rate/ and total
For more information, contact:

Ives Equipment
www.ivesequipment.com
(877) 768-1600

Wednesday, February 3, 2016

Next Generation Tail Gas Analyzer

On-Line Process Analytics is a young industry. Now going into the 3rd generation, the paper below covers topics related to the specification, use and long term ownership of SRU process gas analyzers.







AMETEK Process Instruments has been the leader in tail gas analysis for over 40 years-with more than 1,100 installed model 880 NSL analyzers and more than 100 million hours of run time. The Model 888, the successor of the 880 NSL uses field-proven and highly reliable UV technology to accurately monitor the H2S and SO2 concentrations in sulfur recovery tail gas. This compact, rugged analyzer mounts directly on the process pipe, eliminating the complexity and safety issues of fiber optic coupled photometers.

The Model 888 is the evolution of a well proven formula. All the best elements of the iconic 880 NSL are still there; Four year lamp life, no shelter required and steam blow back for ammonia salts.