Showing posts with label SIPART. Show all posts
Showing posts with label SIPART. Show all posts

Understanding Valve Positioners

valve positioner
Valve positioner on
linear control valve
(Siemens SIPART)
Industrial valves allow the flow of a process fluid through a pipe. Valves always include some type of actuation (opening/closing) device - from simple manual levers to sophisticated electric or pneumatic actuation packages. Industrial valves can act as on/off or proportioning devices to allow full flow, no flow, or modulated flow. When valves are used for modulating fluid flow, an instrument called a valve positioner is installed.

A valve positioner is used in tandem with a valve actuator, the power source to open or close the valve. Positioners precisely direct the actuator to move the valve so that a desired flow volume is achieved and maintained. The positioner does this by monitoring the process condition, comparing it to a desired set point, and then pneumatically, electrically, or hydraulically manipulating the valve orifice until the difference between the set point and actual process variable is zero.

In closed loop control systems where the final control element are valves, valve positioners are the "brains" that provide the corrective signal to eliminate process offset. Positioners enable tighter control by overcoming the realities of valve wear, imprecise calibration, and a host of other process variable challenges.

Valve positioners are used throughout the process industries including power, pharmaceutical, chemicals, oil and gas, food and beverage, pulp and paper, refining and petrochemicals, pipelines, and many other processes.

Basic Function

positioner diagram
Diagram of typical flow control loop using valve positioner.
A valve positioner receives a signal from a controller. The controller could be part of a distributed control system (DCS), a programmable logic controller (PLC), or a discreet PID controller. The controller interprets a signal from some type of sensor, such as a flow transmitter, temperature transmitter, pressure transmitter, or other, and compares the transmitter reading to a desired setpoint. If the controller sees an offset (error), a corrective signal based on the difference, is sent to the valve positioner. The positioner then repositions the valve actuator that in turn readjusts the position of the valve, thereby changing the process condition, brining the system to to equilibrium.

Types of valve positioners:


Pneumatic Positioners

Pneumatic positioners receive pneumatic signals (3-15 or 6-30 PSIG) and proportion the supply air pressure to the valve actuator accordingly to move the valve to the required position. Pneumatic positioners are intrinsically safe and have the ability to provide a large amount of force to open or close a valve.

Electro-Pneumatic Positioners

Electro-pneumatic valve positioners are very similar to pneumatic postioners, except that they contain internal current-to-pneumatic converter (I/P). The current-to-pneumatic module receives a varying electrical signal (most commonly 4-20 mA) and converts that signal (proportionately) to a pneumatic output signal (3-15 PSIG or 6-30 PSIG). The pneumatic signal then then proportions the supply air pressure to the valve actuator.

Electric Positioners

Electric valve positioners receive an electric signal, usually 4-20 mA, 1-5 VDC, 2-10 VCD or 0-10 VDC and generally drive the motors in electric actuators. They perform the same function as pneumatic positioners do, but use electricity instead of air pressure as an input signal.

For more information on valve positioners, or any valve automation requirement, contact Ives Equipment by visiting https://ivesequipment.com or calling 877-768-1600.

An Industrial Valve Positioner that Offers Decisive Advantages

SIPART ® PS2 electro-pneumatic valve positioner
The SIPART ® PS2 electro-pneumatic valve positioner is used to control the final control element of pneumatic linear or part-turn valve actuators. The electro-pneumatic valve positioner moves the actuator to a valve position corresponding to the setpoint. Additional function inputs can be used to block the valve or to set a safety position. A binary input is present as standard in the basic device for this purpose.

The SIPART PS2 smart valve positioner is characterized by significant advantages compared to conventional devices, such as:
  • Only one device version for linear and part-turn valve actuators
  • Simple operation and programming using three keys and a two-line LCD
  • Automatic startup function with self-adjustment of zero and span
  • Manual operation without additional equipment
  • Selectable or freely-programmable characteristics
  • Minimum air consumption
  • Selectable setpoint and manipulated variable limiting
  • Programmable "tight shut-off function"
For more information about the Siemens SIPART 2 positioner download the detailed product brochure from this link,  or visit http://www.ivesequipment.com.

Lost Plant Air a Hidden Source for Energy Savings

Save energy costs
Save energy costs by reducing
consumption of plant air.
Industrial plant air is one of the easiest sources of power to transmit and use. It’s also one of the most costly to generate. Information from the United States Department of Energy (DOE) indicates a wide variety of factors determine the cost of compressed air. These include, but are not limited to, local electrical energy cost, efficiencies of electric motors and compressors, load factors, and service time.

Plant maintenance are becoming more aware of air leaks and the subsequent increases in cost to overcome lost power because of those leaks. One of the major culprits for lost air in a plant is the pneumatic control valve positioner and the air required to operate them. In a typical process plant, there could be hundreds of control valves. Each control valve uses a positioner to move the valve actuator, based on a set point signal from a controller.

Control valve with SIPART
Control valve
with Siemens SIPART
It is the control valve positioner where the greatest air consumption savings lies.

Years ago, when electricity was cheap and when valve positioners were first introduced, plant maintenance and engineering were not concerned with something called the “bleed rate” of the positioner. Over the years though, plant personnel lost track of bleed rate and pretty much forgot that a positioner is just part of the system and it operates on air. Today, a modern process facility such as a power plant, refinery, or chemical plant can have several hundred control valves with positioners. The combined air loss due to the positioner “bleed rate” can be significant.

SIPART positioners
Siemens SIPART positioners
An immediate solution to this problem is to replace the control valve positioners with modern, energy-efficient, low-bleed models. One model, the Siemens SIPART PS2 has a proven track record of providing substantial savings to large plants. In one case, a tabacco company that had 2500 positioners was planning on spending $600,000 on a new compressor to increase output. After reviewing the capabilities of the low bleed positioner and running some tests, the plant decided to implement a plan for replacing the positioners which mitigated the need for a new compressor.

The significant change in technology came with the adoption of the adoption of a piezo ceramic valve block in low bleed positioners. Traditional positioners used an I/P and spool valve which both leaked air. Over time the leaks from these two parts is significant.

Could you and your plant be in the situation where lost energy efficiency through leaky positioners is costing big bucks? If you’re even the slightest bit concerned, call in an applications expert now for a system review.