Showing posts with label electric heat tracing. Show all posts
Showing posts with label electric heat tracing. Show all posts

The Weather is Changing. Freeze Protect Your Facility Now!

Ensure frigid temperatures don’t slow you down.
Nelson Electric Heat Trace.

With over 65 years of experience, let us be your trusted and reliable source for staying operational during those harsh winter months.

As winter weather is settling in, the need to protect vital equipment is essential. With lower temperatures and brutal winds, exterior equipment is in danger of freezing which lengthens or completely halts the production process. Now is the time to assess your heat trace requirements.

Nelson Heat Trace products by Emerson incorporate traditional heat trace design philosophies with innovative installation, control, and monitoring technologies. Our solutions are perfect for keeping metal pipes or other exposed equipment working at the right temperature. With unpredictable weather conditions, it is critical to keep your equipment running; we offer total environmental coverage, no matter the elements.


For more information about Emerson Nelson Heat Trace Products, contact Ives Equipment. Call them at (877) 768-1600 or visit

An Explanation of Industrial Process Heating Technologies

Boiler providing steam for process heat
Boiler providing steam for process heat.
Process heating technologies can be grouped into four general categories based on the type of fuel consumed: fuel, steam, electric, and hybrid systems (which utilize a combination of energy types). These technologies are based upon conduction, convection, or radiative heat transfer mechanisms - or some combination of these. In practice, lower-temperature processes tend to use conduction or convection, whereas high-temperature processes rely primarily on radiative heat transfer. Systems using each of the four energy types can be characterized as follows:

Fuel-based process heating systems generate heat by combusting solid, liquid, or gaseous fuels, then transferring the heat directly or indirectly to the material. Hot combustion gases are either placed in direct contact with the material (i.e., direct heating via convection) or routed through radiant burner tubes or panels that rely on radiant heat transfer to keep the gases separate from the material (i.e., indirect heating).  Examples of fuel-based process heating equipment include furnaces, ovens, red heaters, kilns, melters, and high-temperature generators.

Steam-based process heating systems introduce steam to the process either directly (e.g., steam sparging) or indirectly through a heat transfer mechanism. Large quantities of latent heat from steam can be transferred efficiently at a constant temperature, useful for many process heating applications. Steam-based systems are predominantly used by industries that have a heat supply at or below about 400°F and access to low-cost fuel or byproducts for use in generating the steam. Cogeneration (simultaneous production of steam and electrical power) systems also commonly use steam-based heating systems. Examples of steam-based process heating technologies include boilers, steam spargers, steam-heated dryers, water or slurry heaters, and fluid heating systems.
Electricity-based process heating systems also transform materials through direct and indirect processes. For example, electric current is applied directly to suitable materials to achieve direct resistance heating; alternatively, high-frequency energy can be inductively coupled to suitable materials to achieve indirect heating. Electricity-based process heating systems are used for heating, drying, curing, melting, and forming. Examples of electricity-based process heating technologies include electric arc furnace technology, infrared radiation, induction heating, radio frequency drying, laser heating, and microwave processing.

Hybrid process heating systems utilize a combination of process heating technologies based on different energy sources and/or heating principles to optimize energy performance and increase overall thermal efficiency. For example, a hybrid boiler system may combine a fuel-based boiler with an electric boiler to take advantage of access to lower off-peak electricity prices. In an example of a hybrid drying system, electromagnetic energy (e.g., microwave or radio frequency) may be combined with convective hot air to accelerate drying processes; selectively targeting moisture with the penetrating electromagnetic energy can improve the speed, efficiency, and product quality as compared to a drying process based solely on convection, which can be rate-limited by the thermal conductivity of the material. Optimizing the heat transfer mechanisms in hybrid systems offers a significant opportunity to reduce energy consumption, increase speed/throughput, and improve product quality.

For more information, visit or call (877) 768-1600.

Basics of Self-Regulating Heat Trace Cable

Heat Tracing Layout
Self-regulating Heat Tracing Layout
Self-regulating heater cable is a parallel circuit electric heater strip. An irradiation cross- linked conductive polymer core material is extruded over the multi-stranded, tin-plated, 18-gauge copper bus wires. The conductive core material increases or decreases its heat output in response to temperature changes. A thermoplastic elastomer dielectric jacket is then extruded over the conductive core. A copper braid is installed over this jacket providing a continuous ground path. A UV stabilized thermoplastic elastomer overjacket is provided to cover the braid for wet applications and exposure to the sun.

Principle of Operation:

The parallel bus wires apply voltage along the entire length of the heater cable. The conductive core provides an infinite number of parallel conductive paths permitting the cable to be cut to any length in the field with no dead or cold zones developing. The heater cable derives its self- regulating characteristic from the inherent properties of the conductive core material. As the core material temperature increases, the number of conductive paths in the core material decreases, automatically decreasing the heat output. As the temperature decreases, the number of conductive paths increases, causing the heat output to increase. This occurs at every point along the length of the cable, adjusting the power output to the varying conditions along the pipe. The self-regulating effect allows the cable to be overlapped without creating hot spots or burnout. As the cable self-regulates it heat output, it provides for the efficient use of electric power, producing heat only when and where it is needed, and also limiting the maximum surface temperature.


Self-regulating heater cable is ideal for use in maintaining fluid flow under low ambient conditions. Freeze protection and low watt density process temperature systems such as pipelines, fire protection, process water, dust suppression systems, hot water and structure anti-icing are typical applications for this product. For other than metal pipe heating, see appropriate application guide. The base product is supplied with a copper metal braid with a thermoplastic elastomer overjacket for wet applications, exposure to the sun, and where mechanical abuse is a problem. Cables are UL Listed and CSA Certified for use in non-hazardous locations and can be used on branch sprinkler systems.

For more information see the following Nelson Electric product sheet.