Macnaught Now Offers Explosion Proof/Flame Proof (Ex D) Sensors for Hazardous Areas on MX-Series

Macnaught MX Series
Macnaught MX Series
Macnaught’s Positive Displacement Flow Meters are suitable for a wide range of industrial applications including fuel and oil distribution, corrosive chemical, solvent measurement and high pressure applications to name a few.

Macnaught is proud to now extend its range of pulse output options to include Ex D flame proof approved sensors for hazardous areas.

Download the MX-Series Explosion Proof/Flame Proof (Ex D) Sensors for Hazardous Areas cut sheet here, or review the embedded document below. For more information on Macnaught flowmeters, contact Ives Equipment by visiting https://ivesequipment.com or call (877) 768-1600.

Alfa Laval UltraPure Pumps: LKH UltraPure, LKH Prime UltraPure, SolidC UltraPure, SX UltraPure

Alfa Laval UltraPure PumpAlfa Laval UltraPure pumps are specifically designed for the toughest, most demanding pharmaceutical applications. Their design pays a high level of attention to hygiene and repeatability to reduce the risk of contamination and delivers maximum energy efficiency, a reduced C02 footprint, higher yields and increased uptime.

LKH UltraPure

Designed to meet the specific demands of the biotech and pharmaceutical industries, LKH UltraPure centrifugal pumps deliver maximum uptime and high efficiency plus the benefits of easy cleanability.

LKH Prime UltraPure

The LKH Prime UltraPure is an efficient, versatile self-priming pump designed for Cleaning-in-Place duties containing entrained air with the ability to also pump product in pharmaceutical industry.

SolidC UltraPure

The special features of SolidC UltraPure centrifugal pumps include an external shaft seal and spring, a defined-compression O-ring on the back plate and crevice-free design.

SX UltraPure

Alfa Laval’s premium rotary lobe pump designed for gentle transportation of process fluids in high purity applications in the biotechnology and pharmaceutical industries.

https://iveequipment.com
(877) 768-1600

Five Key Reasons You Should Consider Oval Gear Flow Meters

Oval gear flow meters are simple and robust. They operate by interlocking two oval gears, offset by 90 degrees, inside the meter housing which are then rotated by the flowing media. They are very rugged and designed to operate in very harsh environments. Accuracy is maintained irrespective of temperature, viscosity change, or flow pulsation. It's not unusual to see these meters perform in the field for 30 to 40 years.
Internal view of oval gear flow meter
Internal view of oval gear flow meter (Macnaught)
Five Reason You Should Consider Oval Gear Flow Meters
  1. No flow conditioning - put the meter where you want it. Locate off pumps, valves, U bends with no loss in accuracy or repeatability.
  2. Compact meter footprint allows for excellent OEM or MRO install challenge solutions
  3. Accuracy is unaffected by viscosity changes.
  4. Heavy Duty - meter construction is designed for vibration, dust, piping hammer, low & high ambient temperature conditions -40F to 302F.
  5. Outstanding flow turndown gives best cost of ownership meter sizing potential.
For more information on oval gear flow meters, contact Ives Equipment by visiting https://ivesequipment.com or calling (877) 768-1600.

Valves and Automation for Hygienic, High Purity, or Sanitary Use

Unique mixproof CP-3 The following document presents Alfa Laval's Hygienic (sanitary, high purity) valve offering, including:  Unique Mixproof valves; Unique Mixproof tank valves; PMO (Pasteurized Milk Ordinance) Mixproof series; Tri-Clover Unique 7000 single seat valves; LKB butterfly valves; UltraPure valves; Aseptic diaphragm valves; Ball valves; Control valves; and Regulating valves.

You can review the embedded document below, or download your own PDF version of Alfa Laval Valves and Automation for Hygienic here.


Basics of Thermocouple Junction Design

Industrial thermocouples
Industrial thermocouples (AST)
Thermocouples are simple devices made up of several key components: thermocouple wire, electrical insulation, and the sensing junction. Many thermocouple designs also include a stainless steel sheath that protects the thermocouple from vibration, shock, and corrosion.

A thermocouple has three variations of sensing tip (or junction):
  • Exposed junction, where the exposed wire tips and welded bead have no covering or protection.
  • Grounded junction, where the welded bead is in physical contact with the thermocouple's sheath.
  • Ungrounded junction, where the tip is inside the thermocouple sheath, but is electrical (and somewhat thermally) insulated from the sheath (no sheath contact).
Exposed junction thermocouples respond to temperature change quickly and are less costly, but their signals are susceptible erratic reading caused by induced or conducted electrical noise. Because there is no sheath, they are also prone to mechanical damage and ambient contamination.

Grounded junction thermocouples provide fast response and are mechanically more robust, with a metallic sheath that protects the thermocouple both mechanically and from contaminants. But because their sensing tip is in contact with the external sheath, their signal still can be affected by externally induced or conducted electrical noise.

Ungrounded thermocouples, like grounded, are protected mechanically and from ambient contaminants by their sheath. However, their sensing junctions are kept separate from their metallic sheath, isolating the junction from external electrical  interference. This separation does come at a small cost in temperature sensing responsiveness though.

For safety, precision, and optimum performance, always talk to an applications specialist when applying temperature sensors. A short phone call can prevent major headaches and lost time in  troubleshooting a misapplied thermocouple.

Ives Equipment: Growth and Leadership in Automation and Control

For over 60 years, Ives Equipment Corporation has successfully served the industries of eastern and central Pennsylvania, Delaware, Maryland, New Jersey, metro NY, and Virginia with the latest in process control equipment and services. Our business has been built on a foundation of quality people, highly trained and experienced, who take a keen interest in finding the optimum solutions to our customers' control problems.

Accurate Low-Flow Measurement and High-speed Communication in Supercritical Fluid Extraction and Chromatography Systems

Low-Flow Measurement in Supercritical Fluid Extraction
Low-Flow Measurement in Supercritical Fluid Extraction
A food producer removes caffeine from coffee beans to create a decaffeinated version of its most popular blend. A manufacturer of dietary supplements extracts pesticides and organic solvents from ginseng to ensure a higher-quality end product. A crime laboratory measures the amount of morphine in a blood sample to analyze the usage habits of a drug addict.

These scenarios might not appear to share much in common – after all, what does your favorite morning beverage have to do with forensic drug testing? – but there are important similarities. In each example, a supercritical fluid can be used to carry out precise, efficient, low-toxicity chemical extraction or chromatography.

SITRANS F C MASS 2100  SITRANS FCT010
SITRANS F C MASS 2100
sensor paired with the
SITRANS FCT010
digital transmitter
Regardless of the industry or application, supercritical fluid extraction (SFE) and super- critical fluid chromatography (SFC) require a very specific set of operating conditions. Keeping the environment just right for SFE and SFC requires consistently accurate process measurements – all of which are made possible by incorporating a high-performance Coriolis mass flowmeter designed to measure accurately at low flow rates.

Download this Application Note Here

The Application

An analytical science corporation in the northeastern USA develops instruments for laboratory-based applications across a broad range of industrial, academic and government organizations. Among their specialties are SFE and SFC systems tailored to the specific needs of customers and designed to extract and/or measure a variety of chemical compounds.

Their systems rely on supercritical carbon dioxide (CO2) instead of organic solvents to provide selective sample extractions and/or measurement. CO2 normally behaves as a gas at standard temperature and pressure, or as dry ice when frozen. But when CO2 is held at or above its critical temperature of 31.2 °C (87.8 °F) and critical pressure of 73.8 bar (1071.6 psi), it achieves a super- critical state midway between a gas and a liquid, with liquid-like density and solvating power but a viscosity near zero. Using supercritical CO2 results in shorter completion times and purer extracts – not to mention lower operating costs in comparison to solvent-based systems.

To kick off SFE or SFC, supercritical CO2 is pumped into the system and passes through an integrated Coriolis flowmeter, which measures the incoming mass flow rate, density and temperature. This is a crucial step in both processes, as it’s the prima- ry way to ensure that all CO2 flowing into the system remains in the desired fluid state. Once conditions are verified by the flowmeter, the CO2 helps to extract the compounds (in SFE) or separate and measure them (in SFC).

The Challenge

For more than 15 years, the company has had the option to add a SITRANS F C Coriolis flowmeter from Siemens to their SFE and SFC systems, depending on customer requirements. Their meter of choice consisted of a MASS 2100 sensor in size DI 1.5 (1/16”) and a MASS 6000 transmitter. They initially selected the Siemens solution because of its capability for very accurate measurement – as high as 0.1% of flow rate – under the low-flow conditions required for chemical extraction and measurement with supercritical CO2. The robust construction of the MASS 2100 sensor also offered the reassurance of long-term durability, even in high-pressure environments.

Over time, the company recognized the need to expand into a broader market- place by ensuring that all of their super- critical fluid solutions complied with the RoHS Directive for hazardous materials, which would open the opportunity to sell into the European Union. Having come to appreciate the reliability of the SITRANS F C product line and the responsiveness of Siemens customer support, they turned to Siemens for a digitally based, RoHS-compliant Coriolis flow alternative. That’s when they were introduced to the SITRANS FCT010.

The Solution

Part of the next-generation digital flow platform from Siemens, the FCT010 is a powerful, very compact Coriolis transmitter designed especially for skids and other small-footprint assemblies – a major benefit for the SFE and SFC systems given their limited availability of space.

Another prerequisite for selection was superior performance, and the FCT010 does not disappoint. The transmitter measures with advanced digital signal processing technology, so it produces a stronger signal-to-noise ratio than an analog transmitter for higher accuracy, improved resistance to process noise and a more stable zero point. The FCT010 can also detect and respond to even the smallest changes in flow with a best-in-class 100 Hz update rate.

The company was pleased to learn that the new transmitter could be paired seamlessly with the existing MASS 2100 sensor, which over the course of 15 years has proven to be the ideal low-flow sensor for measuring supercritical CO2. They also liked that the FCT010 is extremely simple to install as a result of its small size and easy-to-use wiring connections.

Ultimately, they placed an order for 100 FCT010 transmitters to be included with new SFE and SFC systems. Now that the enhanced Coriolis flow solutions are in place, the upgraded systems are benefit- ting from faster communication coupled with better process data – all of which adds up to higher-precision, more effi- cient extractions and measurements for laboratories.

With help from the digitally powered SITRANS F C Coriolis flow family, the corporation is equipping manufacturers and researchers with advanced tools that optimize science, commerce and their bottom lines.

For more information, call Ives Equipment at (877) 768-1600 or visit https://ivesequipment.com.

Reprinted with permission from Siemens.