Showing posts with label Siemens. Show all posts
Showing posts with label Siemens. Show all posts

Introduction to Flowmeters

magnetic flowmeters
Magnetic flowmeters
(courtesy of Siemens)
Flowmeters measure the rate or quantity of moving fluids, in most cases liquid or gas, in an open channel or closed conduit. There are two basic flow measuring systems: those which produce volumetric flow measurements and those delivering a weight or mass based measurement. These two systems, required in many industries such as power, chemical, and water, can be integrated into existing or new installations.

Turbine flow meter
Turbine flow meter
internal view
(courtesy of Niagara)
For successful integration, the flow measurement systems can be installed in one of several methods, depending upon the technology employed by the instrument. For inline installation, fittings that create upstream and downstream connections that allow for flowmeter installation as an integral part of the piping system. Another configuration, direct insertion, will have a probe or assembly that extends into the piping cross section. There are also non-contact instruments that clamp on the exterior surface of the piping add gather measurements through the pipe wall without any contact with the flowing media.

Because they are needed for a variety of uses and industries, there are multiple types of flowmeters classified generally into four main groups: mechanical, inferential, electrical, and other.
Variable Area Flowmeters
Variable Area Flowmeters
(courtesy of Siemens)

Quantity meters, more commonly known as positive displacement meters, mass flowmeters, and fixed restriction variable head type flowmeters all fall beneath the mechanical category. Fixed restriction variable head type flowmeters use different sensors and tubes, such as orifice plates, flow nozzles, and venturi and pitot tubes.

Inferential flowmeters include turbine and target flowmeters, as well as variable area flowmeters also known as rotameters.

Laser doppler anemometers, ultrasonic flowmeters, and electromagnetic flowmeters are all electrical-type flowmeters.

For any flowmeter application or question, visit Ives Equipment at www.ivesequipment.com or call (877) 768-1600.

SITRANS FC430 Coriolis Flowmeter Wins Control Engineering’s 2017 Engineers’ Choice Award

SITRANS FC430 Coriolis flow meter
SITRANS FC430 Coriolis Flow Meter
The Siemens SITRANS FC430 Coriolis flow meter, with National Type Evaluation Program custody transfer approval, for volume and mass liquid flow,  is a Control Engineering 2017 Engineers’ Choice Awards Winner.

The Siemens SITRANS FC Coriolis flow sensor delivers mass flow, volume flow, density, fraction and temperature measurement of both liquids and gases with exceptionally high accuracy and low pressure drop.

Siemens Coriolis flow meters are user-friendly to set up and use day-to-day. The meters stand up to the most demanding process industry conditions and continue to operate in the noisiest of environments – from hazardous chemicals to fiscal metering, custody transfer to compressed natural gas fuel dispensing. Its compact design makes installation easy even in the tightest spaces.

For more information on Siemens products, visit Ives Equipment here or call (877) 768-1600.

An Extremely Thin, Multipoint, Temperature Measuring System

SITRANS TO500
Example of use (click for larger view)
Do you want to install a very large number of measuring points in the smallest possible space with a low thermal mass?

Recognizing temperature profiles and detailed understanding of the process are great challenges to plant operators. A fiber-optic based multipoint measuring system by SIEMENS enables you to determine a large number of temperature measuring points along a single sensor fiber and read out a temperature profile in a matter of seconds.

For example, you can quickly and precisely identify points overheating to help avoid or counteract potential damage to your product and/or equipment. Measured values are transmitted through an extremely thin sensor measuring lance. The diameter of the sensor measuring lance is independent of the number of measuring points. The response times of the sensors are also reduced because of the low thermal mass of the fiber optic.

Operation:

A continuously tunable laser generates light in the transmitter with a wavelength between 1500 and 1600 nm, which is output to the sensor measuring lances. The transmitter evaluates the reflected light component. Fiber Bragg Gratings (FBG) are inscribed at defined points on the sensor measuring lances, that reflect a defined wavelength. The wavelength reflected by the grating changes as a function of temperature and so indicates the temperature at the relevant measuring point. A gas cell with a fixed absorption line serves as a reference in the device, against which the determined wavelength is continuously calibrated.
SITRANS TO500
Design of fiber measuring sensor (click for larger view)


SITRANS TO500
In use measuring catalytic conversion
of gases in tube and tube-bundle reactors.
Typical applications:
  • Tube and tube-bundle reactors
  • Capillary and microreactors
  • Distillation
  • Rectifications
For more information in the SITRANS TO500 visit Ives Equipment or call (877) 768-1600.

Basics of Variable Area Flowmeters (Rotameters)

variable area flowmeter
Rotameter
(variable area flowmeter
courtesy of SIEMENS)
Rotameters (variable area flowmeters) can be used to measure many different types of liquids and gases passing through closed piping. The robust design means that it can also be used in harsh conditions. The various types of flange connections, linings and float materials satisfy the requirements of the pharmaceutical and chemical industries.

Flow measurement is performed according to the float principle. The flowing medium lifts the conical float in the measuring ring. This increases the ring gap until an equilibrium is established between the buoyant force of the medium and the weight of the float. The height of the float is directly proportional to the flow rate. The movement of the float is transmitted from one magnet to another magnet in the display unit outside of the measuring tube.

The devices are particularly suitable for measuring:
  • Water
  • Liquids
  • Anti-corrosives and lubricants
  • Solvents
  • Saturated and superheated steam • Food and beverages
  • Industrial gases
The video below provides and excellent understanding of how rotameters operate.

Flow Meter for Efficient and Cost-effective Use of Water for Irrigation

Irrigation flow meter in the field
Irrigation flow meter in the field (courtesy of SIEMENS)
Water is necessary to sustain life, but in many parts of the world it is becoming increasingly scarce. As governments enact stricter legislation in an effort to preserve this vital resource for future generations, the irrigation industry faces a formidable challenge: more carefully managing water consumption and waste prevention while still remaining profitable.

Few resources are as vital to the human population, and the global economy as water. To ensure the continuous preservation of this valuable commodity, the water industry has
On-site testing and validation via SIMATIC PDM tool. 
come to rely on accurate and reliable of battery-operated electromagnetic flow meters is part of ideal water metering solution.

Features to be considered for irrigation flow meters:
  • Battery-powered for greater flexibility in the field 
  • Accuracy
  • Maintenance-free operation 
  • Tamper-proof and robust 
  • Flexible communication 
  • Qualification certificate
  • Wireless solution
The manufacturer SIEMENS produces the SITRANS F M MAG 8000 family of battery-operated water meters providing the flexibility to install a reliable water flow meter virtually anywhere without sacrificing accuracy or performance. No main power is required. MAG 8000 complies with the custody transfer approvals MID and OIML R49 water meter standards and is specially engineered for stand-alone water applications such as abstraction, distribution network, revenue metering and irrigation.

Benefit of the SITRANS F M MAG 8000
  • Simple meter placement - floating chamber IP 68 (NEMA 6P) design ensures continuous filterless performance regardless of position or in-line piping stresses, even when buried underground 
  • Low pressure loss - unrestricted flow tube ensures minimal pressure loss even at high flow rates and reduces overall network system pressure, helping to prevent leakage from burst pipes and excess stress placed on pumping stations 
  • Zero maintenance – no moving parts and 10-year battery life 
  • Bi-directional measurement - only one meter required for measurement in both directions
  • Installation requires 0D inlet to and outlet from the sensor - eliminating concerns about where the meter is installed 
  • Intelligent meter – capable of leak detection, data logging and error self-detection 
  • Remote capabilities – stay up-to-date on measurement data without having to visit the site through optional GSM/GPRS Wireless Communication Module
For more information, contact Ives Equipment by visiting http://www.ivesequipment.com or calling (877) 768-1600.

A Proven Ultrasonic Level Transmitter for Environmental, Water/Wastewater, and Energy Management Industries

SIEMENS SITRANS LU150
Reliable level control for
environmental applications
SITRANS LU150/180
The SIEMENS SITRANS LU150 is a short-range general purpose, 2 wire, 4 to 20 mA loop powered transmitter ideal for liquids, slurries, and bulk materials in open or closed vessels to 5 m (16.4 ft). The SITRANS LU180 is the intrinsically safe model.

Designed primarily for liquid applications in the environmental, water/wastewater, and energy management industries, the device is ideal for non-contact continuous level measurement of liquids and slurries in open or closed vessels.

The reliability of the level readings are based on Sonic Intelligence echo processing algorithms that Siemens has been refining for decades. These algorithms differentiate the true material level echoes from the false ones that can result from acoustic or electrical noises, as well as from agitator blades in motion. It's effective, accurate, unique, and it's exclusively Siemens.

Key Applications
  • Chemical storage vessels 
  • Filter beds
  • Mud pits
  • Liquid storage vessels 
  • Food applications
For more detailed information, check out the brochure below:

Simple Ways to Maximize the Efficiency of Your Process Control Application White Paper

Siemens Integrated Drive Systems
Siemens Integrated Drive Systems
A white paper courtesy of SIEMENS 

No matter what industry you’re in, the price of your inputs is bound to fluctuate – usually trending in a direction that doesn’t favor profits. You can’t control the rising costs of raw materials and energy, but you can control how much you get out of them. The simplest way to do this is by maximizing the efficiency of your equipment.

Performance and productivity are directly related to energy use, reliability and maintenance costs. The improved performance offered by a highly efficient drive train helps increase output and decrease energy consumption. It also reduces wear and tear, thereby limiting maintenance costs and downtime while extending the life of your equipment. To attain this level of efficiency, one need only turn to the application-specific engineering found in integrated drive systems. 

HydroRanger 200 Customer Loyalty Offer from Siemens

HydroRanger200
Take advantage of this
offer for the HydroRanger200
Time sensitive post!

Siemens Process Industries & Drives Division is pleased to bring you the enhanced HydroRanger 200 HMI ultrasonic level controller for measurement in a wide range of industrial applications including water/wastewater monitoring and pumping, inventory management, truck load-outs, and open channel monitoring.

Enhancements include faster commissioning with an improved HMI (Human Machine Interface) and graphical Quick Start Wizards as well as a redesigned enclosure with removable terminal blocks and wider communications.

The HydroRanger 200 HMI provides high performance measurement of level, flow, differential level, and volume conversion, with additional alarm and pump control functions. Siemens’ patented Sonic Intelligence signal processing technology differentiates between true and false echoes from obstructions or electrical noise, giving users repeatable, fast, and reliable measurements.

Siemens is making it easy for you to see the benefits this instrument has to offer. As a loyal customer, they are offering you a 15% discount toward the purchase of the enhanced HydroRanger(s) 200 HMI version.

Call Ives Equipment at 877-768-1600 to place your order.
Use discount code: SPR6029
(Offer valid until December 31, 2016).

Using Magmeters in Zero Upstream and Zero Downstream Applications

MagmeterThis video provides excellent information on installing magnetic flowmeters when you do not have optimal piping situations. The video also provides the viewer with an excellent overview of how Magmeters work.

The presentation reviews topics such as how Magmeter works, mounting configuration, best practices, alternatives for when required upstream/downstream piping distances are not available, the importance of a full pipe, and what kind of accuracy you can expect in less than ideal piping situations.

For more information on magnetic flowmeters visit this link or call Ives Equipment today at (877) 768-1600.

Wastewater Treatment Plants Save Big on Energy with Ultrasonic Controller

SIEMENS LUT400
SIEMENS LUT 400

For a water/wastewater treatment plant (W/WWTP), pumping is one of the most expensive parts of day-to-day operations. Varying from country to country, these costs range from 30 to 50 percent or more of a W/WWTP’s hydro bills – and in the future, this number will only increase as energy prices climb. Overall, water and wastewater treatment are one of the largest energy consumers in most municipalities, so any savings have an impact on more than just the W/WWTP.

By the Numbers

Just how much does pumping cost? Take your average 50 horsepower pump. In an hour, this pump consumes around 37 kilowatts. Do the math and at a cost of $0.065 per kilowatt hour (kWh) – Ontario, Canada’s off-peak price – that one pump costs a W/WWTP $12 every day, $4400 each year (as it has a running time of five hours per day).

But we know that many places, including Canada, the UK, Germany, South Africa, and Australia, have different rates according to the time of day or season energy is consumed. So while our single pump costs $0.065 per hour during low-energy periods, it now costs up to 80% more during Ontario’s peak-energy periods. So if the same company did all of its pumping during these peak periods, over the course of a year it would have spent an additional $3500! And remember this is just for a single pump – many W/WWTPs have hundreds of pumps, depending on a facility’s size.

Of course, no company is going to pump only in peak-energy periods – as we have just seen, that would be outrageously expensive. But, since wastewater treatment happens at all times of the day, facilities must pump during these high-cost periods.

So, How Do I Save Money?

SITRANS LUT400, Siemens’ newest ultrasonic controller, features two models that control
pump operating range
Figure 1: During peak periods, the pump operating range is
much smaller than in normal operation,
reducing the amount of time pumps must run.
economy-pumping regimes (also known as skimming): SITRANS LUT430 Level, Volume, Pump, and Flow Controller; and SITRANS LUT440 High Accuracy Open Channel Monitor, providing a full suite of advanced level, volume, and pump controls.

In normal operation, the controller will turn on pumps once water reaches the high level set point and then will begin pumping down to the low level set point. In economy pumping, the controller will pump wells down to their lowest level before the premium rate period starts, thereby maximizing the well’s storage capacity. The controller then maintains a higher level during the tariff period by using the storage capacity of the collection network. Pumping in this way ensures compliance with environmental regulations and minimizes energy use in peak tariff periods.

How Do I Set Up an Economy-pumping Regime?

Install SITRANS LUT400 ultrasonic controller and connect it to a Siemens Echomax transducer in
Siemens Echomax transducers
Siemens Echomax transducers installed in the well and the
SITRANS LUT400 controller measure the level of water and
control pump operations.
your well. You will set pump on and off points based on your local peak- energy periods. During summer in Ontario, for example, the peak tariff period is between 11 a.m. and 5 p.m.

In the winter, these times change to 7-11 a.m. and 5-7 p.m. You can program up to ve peak zones during one 24-hour period.

To begin setting up your economy-pumping regime, enable SITRANS LUT400’s Energy Savings function. Set the Peak Lead Time to 60 minutes to start pumping water down 60 minutes before the high-cost period begins so the well is at its lowest point. Depending on the volume of your well, you can set your Peak Lead Time to any amount between zero and 65,535 minutes.

On the controller, select the Peak Start Time of 11:00 a.m. and the Peak End Time of 5:00 p.m. Set your Peak ON Setpoint to nine meters and the Peak OFF Setpoint to six meters, as shown in Figure 1.

In Normal Operation mode, the controller starts the pump when water reaches eight meters and stops the pump at two meters. In Energy Saving mode, SITRANS LUT400 turns on the pump when water reaches nine meters and stops pumping at six meters, thus running the pump for the minimum amount of time during peak tariff periods. Cost-savings through economy-pumping regimes are simple to put in place with these steps.

Don’t forget that when you are setting up your controller, you can take advantage of SITRANS LUT400’s real-time clock for daylight saving time adjustment. The real-time clock is a useful feature – input your location’s daylight saving time and economy pumping will occur throughout the year without interruption.

Infiltration and Ingress (I&I) Monitoring
LUT400 controller and XRS-5 transducer
LUT400 controller and XRS-5 transducer
in a wet well application


Another cost-saving feature of this controller is in ltra- tion and ingress monitoring with SITRANS LUT400’s pumped volume feature and built-in datalogging capabilities.

In a closed collection network, it is inef cient and costly to pump rainwater entering the system due to leakages from degraded pipes. SITRANS LUT400 calculates pumped volumes, providing useful historical trending information for detecting abnormal increases of pumped water.

To use this feature, provide the known volume in the well between the pump’s ON and OFF setpoints. The controller will calculate the pumped volume based on the rate of level change in the well during pumping. It also calculates the in ow rate based on the rate of level change in the well just prior to pump startup.

SITRANS LUT400 logs this information for you to review via the controller’s communications options, or by connect- ing a USB cable and downloading logs directly to your computer. By comparing these results, you can see if in ow rates are greater due to rainwater entering the system. Repair those damaged pipes and the cost savings begin!

Through economy pumping and I&I monitoring, SITRANS LUT400 gives companies the potential for sig- ni cant energy savings. One SITRANS LUT400 user stated that every small change his company makes to reduce consumption has the potential to save millions of dollars each year.

For more information, contact:
Ives Equipment
(877) 768-1600

Food Processing: Belt Scales Improve Tomato Processor Efficiency and Productivity

Belt Scales Improve Tomato Processor Efficiency
Belt Scales Improve
Tomato Processing
The following post is a case history on using alternative technology to improve large scale food preparation process.  You'll read about how belt scales outperformed legacy equipment for a tomato peeling process and increasing yield.

Application:

A tomato processor located on the Pacific coast uses the latest technologies in peeling, dicing, and packaging tomatoes. They were preparing to replace some of their older weigh feeders because of declining performance. One of their main concerns with installing new weigh feeders was the cost of moving the existing conveying systems in order to accommodate new weigh feeders.

See the document below for the full case history:

Lost Plant Air a Hidden Source for Energy Savings

Save energy costs
Save energy costs by reducing
consumption of plant air.
Industrial plant air is one of the easiest sources of power to transmit and use. It’s also one of the most costly to generate. Information from the United States Department of Energy (DOE) indicates a wide variety of factors determine the cost of compressed air. These include, but are not limited to, local electrical energy cost, efficiencies of electric motors and compressors, load factors, and service time.

Plant maintenance are becoming more aware of air leaks and the subsequent increases in cost to overcome lost power because of those leaks. One of the major culprits for lost air in a plant is the pneumatic control valve positioner and the air required to operate them. In a typical process plant, there could be hundreds of control valves. Each control valve uses a positioner to move the valve actuator, based on a set point signal from a controller.

Control valve with SIPART
Control valve
with Siemens SIPART
It is the control valve positioner where the greatest air consumption savings lies.

Years ago, when electricity was cheap and when valve positioners were first introduced, plant maintenance and engineering were not concerned with something called the “bleed rate” of the positioner. Over the years though, plant personnel lost track of bleed rate and pretty much forgot that a positioner is just part of the system and it operates on air. Today, a modern process facility such as a power plant, refinery, or chemical plant can have several hundred control valves with positioners. The combined air loss due to the positioner “bleed rate” can be significant.

SIPART positioners
Siemens SIPART positioners
An immediate solution to this problem is to replace the control valve positioners with modern, energy-efficient, low-bleed models. One model, the Siemens SIPART PS2 has a proven track record of providing substantial savings to large plants. In one case, a tabacco company that had 2500 positioners was planning on spending $600,000 on a new compressor to increase output. After reviewing the capabilities of the low bleed positioner and running some tests, the plant decided to implement a plan for replacing the positioners which mitigated the need for a new compressor.

The significant change in technology came with the adoption of the adoption of a piezo ceramic valve block in low bleed positioners. Traditional positioners used an I/P and spool valve which both leaked air. Over time the leaks from these two parts is significant.

Could you and your plant be in the situation where lost energy efficiency through leaky positioners is costing big bucks? If you’re even the slightest bit concerned, call in an applications expert now for a system review.

Clamp-on Flowmeter Locates Hard-to-Find Water Plant Leak

SITRANS FUP1010 clamp-on flowmeter
SITRANS FUP1010 clamp-on flowmeter
A rural water treatment plant in the Southwestern United States treats, stores, and distributes 325,00 gallons per day of water to the village it serves. The village consumes an average of 125,000 gallons a day and can store up to 1 million gallons.

The Problem

Unfortunately, the treatment plant was also losing 210,000 gallons a day due to an unknown leak.
Because of the leak, water storage was critically low at 100,000 gallons and the water service had to be temporarily shut off to half the village.

The village management hired a consultant company, at $1000.00 a day, to find the leak. The consultant worked for about a week without any luck.

The Solution

Read in the document below on how a Siemens SITRANS FUP1010 clamp-on flowmeter was used to find the leak.

Compact NTEP Approved Custody Transfer Coriolis Flowmeter Means Easier Installation and Space Savings

SITRANS FC430
SIEMENS SITRANS FC430
Running an industrial plant carries with it a very high level of responsibility. You must adhere to the highest standards of safety and hygiene, ensure that your final products are of consistent quality, and comply with stringent industry and governmental regulations.

By combining the Siemens SITRANS FCS400 sensor and SITRANS FCT030 transmitter, the digitally based SITRANS FC430 is suitable for applications within the process industries. It is also one of the first Coriolis systems worldwide to achieve SIL 2 and 3 approval in hardware and software, respectively – the ultimate assurance of safety and reliability.

The Siemens SITRANS FCS400 is the market’s most compact sensor, making installation and replacement easier than ever. It provides an accuracy rate of 0.1% and high sensitivity for optimal measurement of even low flows. The SITRANS FCS400 features a very stable zero point, low pressure loss, and high immunity to process noise and plant vibrations.

The SITRANS FCT030 transmitter delivers multi-parameter measurements with enhanced efficiency, simplicity and security. Available in a modular design, it can be remote or compact-mounted with all SITRANS FCS400 sensor sizes. An enclosed micro SD card serves as a removable database of operational information and provides direct access to all certificates and audit trails.

The SITRANS FC430 is ideal for a broad array of process industries and applications, including:
  • Chemical. Designed for optimal performance in hazardous areas and compliant with a wide variety of certificates and approvals, including SIL 2 (hardware), SIL 3 (software), FM, ATEX, CSA
  • Food & Beverage/Pharmaceutical. High level of accuracy improves quality control, while multi-parameter measurement ability strengthens process management. 
  • Oil & Gas. NTEP approved for custody transfer and capable of measuring mass flow directly, ensuring performance is not affected by fluctuating process conditions. Unique tube design results in minimal pressure loss and high resistance to process noise.
  • Affiliated Industries/OEMs. Highly customizable nature offers versatility to meet the needs of customers in many different businesses, from food and beverage to automotive to HVAC, to oil and gas to pulp & paper and beyond.
Formore information, contact:

Ives Equipment
877-768-1600

Compact Coriolis Flowmeter with NTEP Custody Transfer Approval

NTEP approval
NTEP approval for
custody transfer

When oil and gas are physically transferred from one operator to another, the term custody transfer is used to describe the transaction. It is understood as the transfer of fluid material defined by a metering device, at a given location, to another party. Custody transfer occurs at a variety of locations including from production platforms to ships, trucks, railcars, barges, and also at the final destination, such as the processing plant or refinery.

Accuracy is very important in custody transfer as both parties and instruments such as flowmeters must have approval by the organizations such as the American Petroleum Institute (API) or the National Conference on Weights and Measures (NCWM).

The National Type Evaluation Program (NTEP) is an evaluation program overseen by the National Conference on Weights and Measures (NCWM). Manufacturers who carry NTEP approval comply with local state and government regulations regarding transactions selling, purchasing, exchanging, custody transfer, or establishing the cost for services on based on weight.

NTEP approval
Compact Coriolis flowmeter
with NTEP approval
Siemens has announced the SITRANS FC430 Coriolis flow meter now has National Type Evaluation Program (NTEP) CT approval for the USA and Canada. The approval is for both the measurement of volume and mass liquid flow, and offers high accuracy measurement with minimum of pressure loss. The SITRANS FC430's performance and custody transfer approval makes it an excellent fiscal metering tool for diverse industries such as oil and gas, petrochemical, and food and beverage.

For more information, contact:
Ives Equipment
www.ivesequipment.com
877-768-1600

Coriolis Flow Sensor with 15 RA/230 Grit for Sanitary Applications

Sanitary Coriolis flow sensor
Sanitary Coriolis flow sensor
with 15 RA / 230 Grit finish
on wetted parts.
(Courtesy of Siemens)
In sanitary applications, the finish and the material must be designed for easy and reliable cleaning and sanitation. For decades agencies have required sanitary finishes to comply to minimum standards. But now, many food, Biotech, and Pharma companies are going beyond the minimum regulations and providing high-end finishes because of the reduced sanitation time and reduced bacteria growth these finishes facilitate.

Sanitary applications mandate that stainless steel equipment have a sanitary finish. In very general terms, “sanitary finish” means a smooth, scratch-free, non-corrosive finish. But it’s much more than that. To qualify the finish more accurately, there are two primary terms used:

Roughness Average, or RA: A standard for an average of the peaks and valleys of the metal’s surface, measured in microinches or micrometers. The lower the RA, the smoother the finish.

Grit: The size of the abrasive used in the metal polishing process. Higher grit numbers are associated with higher polishing.

For process control equipment manufacturers, achieving higher-end finishes is not an easy proposition. Providing better finishes requires experience and controlled processes for quality fabrication, as well as possible tooling and production floor changes. Working inside sanitary requirements requires careful handling to prevent contamination from the manufacturing environment. Not all process instrument manufacturers are capable of providing the required environment.

A Coriolis Flowmeter with 15 RA/230 Grit for Biotech and Pharma

Siemens is currently offering a 15 RA/230 Grit surface finish for the FCS400 Coriolis flow sensor internal wetted-tube parts as a special, and will soon be offering it as a standard.

A Coriolis sensor, with such a high end finish, is very attractive to many "clean" industries including chromatography, blood plasma fractioning, chemical synthesis phases, Active Pharmaceutical Ingredient (API) extraction/fermentation and purification, formulation, and  purified API.

Biotech and Pharma manufacturers, in particular, are poised to take advantage of the enhanced 15 RA/230 Grit finish coupled with the inherent benefits of the FCS400 Coriolis flow sensor, namely:
  1. Accurate measurement across the entire range
  2. Zero internal fabrication joints and self-draining design
  3. All metal surfaces eliminate risks from particulates from the breakdown of synthetic materials
  4. No internal fluids to leak into the process
  5. A direct mass flow rate/ and total
For more information, contact:

Ives Equipment
www.ivesequipment.com
(877) 768-1600

Siemens SITRANS LUT400 Pump Level Assist Routines

Siemens SITRANS LUT400
Siemens SITRANS LUT400

The Siemens SITRANS LUT400 series controllers are compact, single point, long-range ultrasonic controllers for continuous level, or volume measurement of liquids, slurries, and solids, and high accuracy monitoring of open channel flow.

The preconfigured pump routines in the SITRANS LUT 400 allow you to choose the best pump control scenario for your application. In the video below, you will see how the assist pump routines work.

The SITRANS LUT 400 has three assists pump routines available:
  • Alternate duty assist
  • Service ratio duty assist
  • Fixed duty assist
The fixed duty assist routine mainly uses one pump to control the liquid level. In this example, pump 1 will always start before pump 2. When the liquid level reaches the pump 1 “on” set point, pump one will turn on. If the liquid level continues to rise while pump one is running, then pump 2 will start. Pump 2 will assist pump 1 to lower the liquid level. Both pumps we'll turn off when the liquid level reaches the “off” set point. This pump sequence is fixed. Pump 1 will always start first, then if necessary, pump 2 will assist pump 1.

The alternate duty assist routine rotates between both pumps to control the liquid level. Pump 1 will start first. If it cannot keep up with the inflow, then pump 2 will turn on and assist pump 1. Both pumps will run until the liquid level reaches the pump “off” set point. On the next cycle, pump 2 will be the first pump to start. Pump 1 will assist pump 2 if it is necessary. The starting pump will continue to alternate between pump 1 and pump 2 after each filling cycle.

The service ratio duty assist routine rotates between both pumps based on the defined service ratio. In this example the service ratio is split equally between both pumps. The SITRANS LUT will choose which pump starts first based on this ratio. Since pump 1 has the lowest runtime hours it starts first. Pump 2 will assist pump 1 if the level continues to increase.  On the next cycle, pump 2 to will start first. Pump 1 will assist pump 2 if necessary. The service duty ratio assist routine will continue to maintain the runtime ratio for each filling cycle.


A Clean in Place (CIP) Mag Flow Meter with Pasteurized Milk Ordinance (PMO) Approvals

magmeter with PMO approval
Magmeter with PMO approval
(courtesy of SIEMENS)
Dairies have been hampered by a limited selection of flowmeters to process raw ingredients and maximize productivity. Faced with limited choices for instrumentation, the Food and Beverage Industry is always interested in new products and certification. In this case, the product is a "Clean in Place" (CIP) electromagnetic flow meter (Magmeter) with Pasteurized Milk Ordinance (PMO) approvals.

Clean-in-place (CIP) is a method of cleaning the interior surfaces of process equipmentpipes, vessels, and fittings, without disassembly. This is an invaluable technology in the dairy, brewery, beverage, processed foods, cosmetics, and pharmaceutical industries by providing a cleaning process which is faster, far less labor-intensive, more consistent, and with less chemical exposure to workers.

The Pasteurized Milk Ordinance, is published by the Food and Drug Administration further defines minimum standards and requirements for Grade A milk production and processing.

A Magmeter is an excellent flowmeter choice for dairy use because it is unaffected by suspended solids, viscosity, and temperature challenges typically found in food and beverage applications. Additionally, magnetic flowmeters provide:
  • Ease of installation with Tri-clamp fittings.
  • Stainless steel, obstruction less flow performance meets all sanitary requirements and is 3A certified.
  • Suitable for CIP and SIP cleaning.
  • IP67 I NEMA 4X rating that is upgradeable to IP68 /NEMA 6P.
Carrying a PMO approval provides the dairy with confidence and assurance that the magnetic flowmeters have been tested and approved precisely for use in their plant.

For more information, see the document below:

Remote Sensing of Gases Directly in the Process

Electric power plant
Electric Power Plant
Industrial operations, whether for direct process control or emissions compliance monitoring, have a need for accurate, reliable measurement of specific gas concentrations within a flowing medium. Tunable diode laser spectroscopy, packaged for industrial use, provides a number of substantially positive attributes.

  • Rapid measurement.
  • Can be focused on a specific component of interest.
  • Multi-channel operation provides analysis of several components.
  • In situ installation can provide direct measurements within a stack, pipe, or duct without sample handling or conditioning.
  • Can measure NH3, HF, HCl, H2O, CO, CO2.
  • Internal reference cell provides long term stability.
  • Some models have continuous automatic calibration.
Siemens manufactures a line of tunable diode laser gas analyzers for industrial applications. In the company's own words, here is a basic description of how it works.

As a tunable diode laser-based technology this in-situ device enables high-performance measurements. The sensors (transmitter and receiver) are meant to be mounted directly on the process with no need of sampling systems. Laser light is sent from the transmitter, passing through the process gas, arriving at the detector on the receiver side. The measurements are carried out on-line with a very short response time permitting fast and effective cost-savings in process control. The laser characteristics allow single-line spectroscopy free of interferences. Since the band width of the laser light is extremely narrow, only the gas component of interest will interact with it. Other process influences, such as dust and temperature, are easily eliminated due to the excellent inherent compensation capabilities of this technique.


There is application assistance and more detailed information available from knowledgeable sales engineers in all localities. Combine your process mastery with their product application resources to meet the challenges posed by modern industrial process operation.